Cryptography I

ECS 153 Spring Quarter 2021
Module 13
Cryptosystem

• Quintuple \((E, D, M, K, C)\)
 • \(M\) set of plaintexts
 • \(K\) set of keys
 • \(C\) set of ciphertexts
 • \(E\) set of encryption functions \(e : M \times K \rightarrow C\)
 • \(D\) set of decryption functions \(d : C \times K \rightarrow M\)
Example

• Example: Cæsar cipher

 • $\mathcal{M} = \{ \text{sequences of letters} \}$

 • $\mathcal{K} = \{ i \mid i \text{ is an integer and } 0 \leq i \leq 25 \}$

 • $\mathcal{E} = \{ E_k \mid k \in \mathcal{K} \text{ and for all letters } m, E_k(m) = (m + k) \mod 26 \}$

 • $\mathcal{D} = \{ D_k \mid k \in \mathcal{K} \text{ and for all letters } c, D_k(c) = (26 + c - k) \mod 26 \}$

 • $C = \mathcal{M}$
Attacks

• Opponent whose goal is to break cryptosystem is the adversary
 • Assume adversary knows algorithm used, but not key

• Three types of attacks:
 • ciphertext only: adversary has only ciphertext; goal is to find plaintext, possibly key
 • known plaintext: adversary has ciphertext, corresponding plaintext; goal is to find key
 • chosen plaintext: adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key
Basis for Attacks

• **Mathematical attacks**
 • Based on analysis of underlying mathematics

• **Statistical attacks**
 • Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), etc.
 • Called models of the language
 • Examine ciphertext, correlate properties with the assumptions.
Symmetric Cryptography

• Sender, receiver share common key
 - Keys may be the same, or trivial to derive from one another
 - Sometimes called *secret key cryptography*

• Two basic types
 - Transposition ciphers
 - Substitution ciphers
 - Combinations are called *product ciphers*
Transposition Cipher

• Rearrange letters in plaintext to produce ciphertext

• Example (Rail-Fence Cipher)
 • Plaintext is HELLO WORLD
 • Rearrange as

 HLOOL
 ELWRD

 • Ciphertext is HLOOL ELWRD
Attacking the Cipher

• Anagramming
 • If 1-gram frequencies match English frequencies, but other n-gram frequencies do not, probably transposition
 • Rearrange letters to form n-grams with highest frequencies
Example

• Ciphertext: HLOOLELWRD
• Frequencies of 2-grams beginning with H
 • HE 0.0305
 • HO 0.0043
 • HL, HW, HR, HD < 0.0010
• Frequencies of 2-grams ending in H
 • WH 0.0026
 • EH, LH, OH, RH, DH ≤ 0.0002
• Implies E follows H
Example

• Arrange so the H and E are adjacent
 HE
 LL
 OW
 OR
 LD

• Read across, then down, to get original plaintext
Substitution Ciphers

• Change characters in plaintext to produce ciphertext

• Example (Caesar cipher)
 • Plaintext is HELLO WORLD
 • Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 • Key is 3, usually written as letter ‘D’
 • Ciphertext is KHOOR ZRUOG
Attacking the Cipher

• Exhaustive search
 • If the key space is small enough, try all possible keys until you find the right one
 • Caesar cipher has 26 possible keys

• Statistical analysis
 • Compare to 1-gram model of English
Statistical Attack

• Compute frequency of each letter in ciphertext:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>0.1</td>
</tr>
<tr>
<td>H</td>
<td>0.1</td>
</tr>
<tr>
<td>K</td>
<td>0.1</td>
</tr>
<tr>
<td>O</td>
<td>0.3</td>
</tr>
<tr>
<td>R</td>
<td>0.2</td>
</tr>
<tr>
<td>U</td>
<td>0.1</td>
</tr>
<tr>
<td>Z</td>
<td>0.1</td>
</tr>
</tbody>
</table>

• Apply 1-gram model of English

 • Frequency of characters (1-grams) in English is on next slide
Character Frequencies

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.07984</td>
<td>h</td>
<td>0.06384</td>
<td>n</td>
<td>0.06876</td>
<td>t</td>
</tr>
<tr>
<td>b</td>
<td>0.01511</td>
<td>i</td>
<td>0.07000</td>
<td>o</td>
<td>0.07691</td>
<td>u</td>
</tr>
<tr>
<td>c</td>
<td>0.02504</td>
<td>j</td>
<td>0.00131</td>
<td>p</td>
<td>0.01741</td>
<td>v</td>
</tr>
<tr>
<td>d</td>
<td>0.04260</td>
<td>k</td>
<td>0.00741</td>
<td>q</td>
<td>0.00107</td>
<td>w</td>
</tr>
<tr>
<td>e</td>
<td>0.12452</td>
<td>l</td>
<td>0.03961</td>
<td>r</td>
<td>0.05912</td>
<td>x</td>
</tr>
<tr>
<td>f</td>
<td>0.02262</td>
<td>m</td>
<td>0.02629</td>
<td>s</td>
<td>0.06333</td>
<td>y</td>
</tr>
<tr>
<td>g</td>
<td>0.02013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Statistical Analysis

- $f(c)$ frequency of character c in ciphertext
- $\varphi(i)$ correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is i
 - $\varphi(i) = \sum_{0 \leq c \leq 25} f(c)p(c - i)$ so here,
 - $\varphi(i) = 0.1 \ p(6 - i) + 0.1 \ p(7 - i) + 0.1 \ p(10 - i) + 0.3 \ p(14 - i) + 0.2 \ p(17 - i) + 0.1 \ p(20 - i) + 0.1 \ p(25 - i)$
 - $p(x)$ is frequency of character x in English
Correlation: $\varphi(i)$ for $0 \leq i \leq 25$

<table>
<thead>
<tr>
<th>i</th>
<th>$\varphi(i)$</th>
<th>i</th>
<th>$\varphi(i)$</th>
<th>i</th>
<th>$\varphi(i)$</th>
<th>i</th>
<th>$\varphi(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0469</td>
<td>7</td>
<td>0.0461</td>
<td>13</td>
<td>0.0505</td>
<td>19</td>
<td>0.0312</td>
</tr>
<tr>
<td>1</td>
<td>0.0393</td>
<td>8</td>
<td>0.0194</td>
<td>14</td>
<td>0.0561</td>
<td>20</td>
<td>0.0287</td>
</tr>
<tr>
<td>2</td>
<td>0.0396</td>
<td>9</td>
<td>0.0286</td>
<td>15</td>
<td>0.0215</td>
<td>21</td>
<td>0.0526</td>
</tr>
<tr>
<td>3</td>
<td>0.0586</td>
<td>10</td>
<td>0.0631</td>
<td>16</td>
<td>0.0306</td>
<td>22</td>
<td>0.0398</td>
</tr>
<tr>
<td>4</td>
<td>0.0259</td>
<td>11</td>
<td>0.0280</td>
<td>17</td>
<td>0.0386</td>
<td>23</td>
<td>0.0338</td>
</tr>
<tr>
<td>5</td>
<td>0.0165</td>
<td>12</td>
<td>0.0318</td>
<td>18</td>
<td>0.0317</td>
<td>24</td>
<td>0.0320</td>
</tr>
<tr>
<td>6</td>
<td>0.0676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>0.0443</td>
</tr>
</tbody>
</table>
The Result

• Most probable keys, based on φ:
 • $i = 6, \varphi(i) = 0.0676$
 • plaintext EBIIL TLOLA
 • $i = 10, \varphi(i) = 0.0631$
 • plaintext AXEEH PHKEW
 • $i = 14, \varphi(i) = 0.0561$
 • plaintext WTAAD LDGAS
 • $i = 3, \varphi(i) = 0.0586$
 • plaintext HELLO WORLD

• Only English phrase is for $i = 3$
 • That’s the key (3 or ‘D’)

May 5, 2021
ECS 153, Computer Security; Spring Quarter 2021
Caesar’s Problem

• Key is too short
 • Can be found by exhaustive search
 • Statistical frequencies not concealed well
 • They look too much like regular English letters

• So make it longer
 • Multiple letters in key
 • Idea is to smooth the statistical frequencies to make cryptanalysis harder
Vigènere Cipher

• Like Caesar cipher, but use a phrase
 • So it’s effectively multiple Caesar ciphers
• Example
 • Message A LIMERICK PACKS LAUGHS ANATOMICAL
 • Key BENCH
 • Encipher using Caesar cipher for each letter:

 key BENCHBENCHBENCHBENCHBENCHBENCH
 plain ALIMERICKPACKSLAUGHSANATOMICAL
 cipher BPVOLSMPMWBGXUSBTYTJZBRNVVNPCS
Relevant Parts of Tableau

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |

- Tableau shown has relevant rows, columns only
 - Columns correspond to letters from the key
 - Rows correspond to letters from the message

- Example encipherments:
 - Key B, letter R: follow B column down to R row (giving “S”)
 - Key H, letter L: follow H column down to L row (giving “S”)

May 5, 2021
ECS 153, Computer Security; Spring Quarter 2021
Useful Terms

• *period*: length of key
 • In earlier example, period is 3

• *tableau*: table used to encipher and decipher
 • Vigènere cipher has key letters on top, plaintext letters on the left

• *polyalphabetic*: the key has several different letters
 • Caesar cipher is monoalphabetic
Attacking the Cipher

• Approach
 • Establish period; call it n
 • Break message into n parts, each part being enciphered using the same key letter
 • Solve each part; you can leverage one part from another

• We will show each step
The Target Cipher

• We want to break this cipher:

 ADQYS MIUSB OXKKT MIBHK IZOOO EQOOG IFBAG KAUMF
 VVTAA CIDTW MOCIO EQOOG BMBFV ZGGWP CIEKQ HSNEW
 VECNE DLAAV RWKXS VNSVP HCEUT QOIOF MEGJS WTPCH
 AJMOC HIUIX
Establish Period

• Kaskski: *repetitions in the ciphertext occur when characters of the key appear over the same characters in the plaintext*

• Example:

key	VIGVIGVIGVIGVIGV
plain	THEBOYHASTHEBALL
cipher	OPKWWECIYOPKWIRG

Note the key and plaintext line up over the repetitions (underlined). As distance between repetitions is 9, the period is a factor of 9 (that is, 1, 3, or 9)
Repetitions in Example

<table>
<thead>
<tr>
<th>Letters</th>
<th>Start</th>
<th>End</th>
<th>Gap Length</th>
<th>Gap Length Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEQOOG</td>
<td>24</td>
<td>54</td>
<td>30</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>MOC</td>
<td>50</td>
<td>122</td>
<td>72</td>
<td>2, 2, 2, 3, 3</td>
</tr>
</tbody>
</table>
Estimate of Period

- OEQOOG is probably not a coincidence
 - It’s too long for that
 - Period may be 1, 2, 3, 5, 6, 10, 15, or 30

- MOC is also probably not a coincidence
 - Period may be 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, or 72

- Period of 2 or 3 is probably too short (but maybe not)

- Begin with period of 6
Check on Period

• Index of coincidence is probability that two randomly chosen letters from ciphertext will be the same

• Tabulated for different periods:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0660</td>
</tr>
<tr>
<td>2</td>
<td>0.0520</td>
</tr>
<tr>
<td>3</td>
<td>0.0473</td>
</tr>
<tr>
<td>6</td>
<td>0.0427</td>
</tr>
</tbody>
</table>
Compute IC for an Alphabet

\[IC = \frac{n(n - 1)}{2} \sum_{0 \leq i \leq 25} [F_i (F_i - 1)] \]

- where \(n \) is length of ciphertext and \(F_i \) the number of times character \(i \) occurs in ciphertext

- For the given ciphertext, IC = 0.0433
 - Indicates a key of length 5 or 6
 - A statistical measure, so it can be in error, but it agrees with the previous estimate (which was 6)
Splitting Into Alphabets

alphabet 1: AIKHOIATTOBGEEERNEOSAI
alphabet 2: DUKKEFUAWEMGKWDSUFWJU
alphabet 3: QSTIQBMAMOBWQLKVVTMTMI
alphabet 4: YBMZOACOOFPHEAXPQEPOX
alphabet 5: SOIOOGVICOVCSVASHOGCC
alphabet 6: MXBOGKVDIGZINNVVCIJHH

- ICs (#1, 0.0692; #2, 0.0779; #3, 0.0779; #4, 0.0562; #5, 0.1238; #6, 0.0429) indicate all alphabets have period 1, except #4 (between 1 and 2) and #6 (between 5 and 6); assume statistical variance
Frequency Examination

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
1	3	1	0	0	4	0	1	1	3	0	1	0	1	3	0	0	1	1	2	0	0	0	0	0	0	
2	1	0	0	2	2	2	1	0	0	1	3	0	1	0	0	0	0	0	1	0	4	0	4	0	0	0
3	1	2	0	0	0	0	0	0	2	1	1	4	0	0	0	4	0	1	3	0	2	1	0	0	0	
4	2	1	1	0	2	2	0	1	0	0	0	0	1	0	4	3	1	0	0	0	0	0	0	2	1	1
5	1	0	5	0	0	0	2	1	2	0	0	0	0	5	0	0	0	3	0	0	2	0	0	0	0	
6	0	1	1	1	0	0	2	2	3	1	1	0	1	2	1	0	0	0	0	0	0	0	3	0	1	0

The last row has general letter frequencies (H high, M medium, L low)
Begin Decryption

- First matches characteristics of unshifted alphabet
- Third matches if I shifted to A
- Sixth matches if V shifted to A
- Substitute into ciphertext (bold are substitutions)

```
ADIYS RIUKB OCKKL MIGHK AZOTO EIOOL IFTAG
PAUEF VATAS CIITW EOCNO EIOOL BMTFV EGGOP
CNEKI HSSEW NECSE DDAAA RWCXS ANSNP HHEUL
QONOF EEGOS WLPCM AJEOC MIUAX
```
Look For Clues

- **AJE** in last line suggests “are”, meaning second alphabet maps A into S:

 - ALIYS RICKB OCKSL MIGHS AZOTO MIOOL INTAG
 - PACEF VATIS CIITE EOCNO MIOOL BUTFV EGOOP
 - CNESI HSSEE NECSE LDAAA RECXS ANANP HHECL
 - QONON EEGOS ELPCM AREOC MICAX
Next Alphabet

- **MICAX** in last line suggests “mical” (a common ending for an adjective), meaning fourth alphabet maps O into A:

 ALIMS RICKP OCKSL AIGHS ANOTO MICOL INTOG
 PACET VATIS QIITE ECCNO MICOL BUTTV EGOOD
 CNESI VSSEE NSCSE LDOAA RECLS ANAND HHECL
 EONON ESGOS ELDCM ARECC MICAL
Got It!

• QI means that U maps into I, as Q is always followed by U:

```
ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS
PACET HATIS QUITE ECONO MICAL BUTTH EGOOD
ONESI VESEE NSOSE LDOMA RECLE ANAND THECL
EANON ESSOS ELDOM ARECO MICAL
```
One-Time Pad

• A Vigenère cipher with a random key at least as long as the message
 • Provably unbreakable
 • Why? Look at ciphertext DXQR. Equally likely to correspond to plaintext DOIT (key AJIY) and to plaintext DONT (key AJDY) and any other 4 letters
• Warning: keys must be random, or you can attack the cipher by trying to regenerate the key
 • Approximations, such as using pseudorandom number generators to generate keys, are not random
Overview of the DES

• A block cipher:
 • encrypts blocks of 64 bits using a 64 bit key
 • outputs 64 bits of ciphertext

• A product cipher
 • basic unit is the bit
 • performs both substitution and transposition (permutation) on the bits

• Cipher consists of 16 rounds (iterations) each with a 48 bit round key
 generated from the user-supplied key
Structure of the DES

• Input is first permuted, then split into left half (L) and right half (R), each 32 bits

• Round begins; R and round key run through function f, then xor’ed with L
 • f expands R to 48 bits, xors with round key, and then each 6 bits of this are run through S-boxes (substitution boxes), each of which gives 4 bits of output
 • Those 32 bits are permuted and this is the output of f

• R and L swapped, ending the round
 • Swapping does not occur in the last round

• After last round, L and R combined, permuted, forming DES output
Controversy

• Considered too weak
 • Diffie, Hellman said in a few years technology would allow DES to be broken in days
 • Design using 1999 technology published

• Design decisions not public
 • S-boxes may have backdoors
Undesirable Properties

• 4 weak keys
 • They are their own inverses

• 12 semi-weak keys
 • Each has another semi-weak key as inverse

• Complementation property
 • $\text{DES}_k(m) = c \implies \text{DES}_k(m^\perp) = c'$

• S-boxes exhibit irregular properties
 • Distribution of odd, even numbers non-random
 • Outputs of fourth box depends on input to third box
Differential Cryptanalysis

- A chosen ciphertext attack
 - Requires 2^{47} plaintext, ciphertext pairs
- Revealed several properties
 - Small changes in S-boxes reduced the number of pairs needed
 - Making every bit of the round keys independent did not impede attack
- Linear cryptanalysis improves result
 - Requires 2^{43} plaintext, ciphertext pairs
DES Modes

• Electronic Code Book Mode (ECB)
 • Encipher each block independently

• Cipher Block Chaining Mode (CBC)
 • Xor each block with previous ciphertext block
 • Requires an initialization vector for the first one

• Encrypt-Decrypt-Encrypt (2 keys: k, k')
 • $c = \text{DES}_k(\text{DES}_{k'}^{-1}(\text{DES}_k(m)))$

• Triple DES (3 keys: k, k', k'')
 • $c = \text{DES}_k(\text{DES}_{k'}(\text{DES}_{k''}(m)))$
Current Status of DES

• Design for computer system, associated software that could break any DES-enciphered message in a few days published in 1998
• Several challenges to break DES messages solved using distributed computing
• NIST selected Rijndael as Advanced Encryption Standard, successor to DES
 • Designed to withstand attacks that were successful on DES
• DES officially withdrawn in 2005
Advanced Encryption Standard

• Competition announces in 1997 to select successor to DES
 • Successor needed to be available for use without payment (no royalties, etc.)
 • Successor must encipher 128-bit blocks with keys of lengths 128, 192, and 256
• 3 workshops in which proposed successors were presented, analyzed
• Rijndael selected as successor to DES, called the Advanced Encryption Standard (AES)
 • Other finalists were Twofish, Serpent, RC6, MARS
Overview of the AES

• A block cipher:
 • encrypts blocks of 128 bits using a 128, 192, or 256 bit key
 • outputs 128 bits of ciphertext

• A product cipher
 • basic unit is the bit
 • performs both substitution and transposition (permutation) on the bits

• Cipher consists of rounds (iterations) each with a round key generated from the user-supplied key
 • If 128 bit key, then 10 rounds
 • If 192 bit key, then 12 rounds
 • If 256 bit key, then 14 rounds
Structure of the AES: Encryption

• Input placed into a state array, which is then combined with zeroth round key
 • Treat state array as a 4x4 matrix, each entry being a byte
• Round begins; new values substituted for each byte of the state array
• Rows then cyclically shifted
• Each column independently altered
 • Not done in last round
• Result xor’ed with round key
• After last round, state array is the encrypted input
Structure of the AES: Decryption

• Round key schedule reversed
• Input placed into a state array, which is then combined with zeroth round key (of reversed schedule)
• Round begins; rows cyclically shifted, then new values substituted for each byte of the state array
 • Inverse rotation, substitution of encryption
• Result xor’ed with round key (of reversed schedule)
• Each column independently altered
 • Inverse of encryption; this is not done in last round
• After last round, state array is the decrypted input
Analysis of AES

• Designed to withstand attacks that the DES is vulnerable to
• All details of design made public, unlike with the DES
 • In particular, those of the substitutions (S-boxes) were described
• After 2 successive rounds, every bit in the state array depends on every bit in the state array 2 rounds ago
• No weak, semi-weak keys
AES Modes

• DES modes also work with AES
• EDE and “Triple-AES” not used
 • Extended block size makes this unnecessary
• New counter mode CTR added