Outline for April 1, 2004

- 1. Basic components
 - a. Confidentiality
 - b. Integrity
 - c. Availability
- 2. Threats
 - a. Snooping
 - b. Modification
 - c. Masquerading; contrast with delegation
 - d. Repudiation of origin
 - e. Denial of receipt
 - f. Delay
 - g. Denial of service
- 3. Role of policy
 - a. Example of student copying files from another
 - b. Emphasize: policy defines security
 - c. Distinguish between policy and mechanism
- 4. Goals of security
 - a. Prevention
 - b. Detection
 - c. Recovery
- 5. Trust
 - a. Hammer this home: all security rests on trust
 - b. First problem: security mechanisms correctly implement security policy; walk through example of a program that logs you in; point out what is trusted
 - c. Second problem: policy does what you want; define secure, precise
- 6. Operational issues; change over time
 - a. Cost-benefit analysis
 - b. Risk analysis (comes into play in cost-benefit too)
 - c. Laws and customs
- 7. Human Factors
 - a. Organizational problems
 - b. People problems (include social engineering)
- 8. Principles of Secure Design
 - a. Refer to both designing secure systems and securing existing systems
 - b. Speaks to limiting damage
- 9. Principle of Least Privilege
 - a. Give process only those privileges it needs
 - b. Discuss use of roles; examples of systems which violate this (vanilla UNIX) and which maintain this (Secure Xenix)
 - c. Examples in programming (making things setuid to root unnecessarily, limiting protection domain; modularity, robust programming)
 - d. Example attacks (misuse of privileges, etc.)
- 10. Principle of Fail-Safe Defaults
 - a. Default is to deny

b. Example of violation: *su* program