Outline for April 27, 2004

1. BLP: formally
 a. Elements of system: \(s_i \) subjects, \(o_j \) objects,
 b. State space \(V = B \times M \times F \times H \) where:
 \(B \) set of current accesses (i.e., access modes each subject has currently to each object);
 \(M \) access permission matrix;
 \(F \) consists of 3 functions: \(f_s \) is security level associated with each subject, \(f_o \) security level associated with each object, and \(f_c \) current security level for each subject
 \(H \) hierarchy of system objects, functions \(h:O \rightarrow P(O) \) with two properties:
 If \(a_j \neq o_j \), then \(h(o_j) \cap h(o_j) = \emptyset \)
 There is no set \(\{ o_1, \ldots, o_k \} \subseteq O \) such that for each \(i, a_{i+1} \in h(o_i) \) and \(a_{k+1} = o_1 \).
 c. Set of requests is \(R \)
 d. Set of decisions is \(D \)
 e. \(W \subseteq R \times D \times V \times V \) is motion from one state to another.
 f. System \(\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z \) such that \((x, y, z) \in \Sigma(R, D, W, z_0) \) iff \((x, y, z, z_{i-1}) \in W \) for each \(i \in T \); latter is an action of system
 g. Theorem: \(\Sigma(R, D, W, z_0) \) satisfies the simple security property for any initial state \(z_0 \) that satisfies the simple security property iff \(W \) satisfies the following conditions for each action \((r_j, d_j, (b', m', f', h'), (b, m, f, h)) \):
 (i) each \((s, o, x) \in b' - b \) satisfies the simple security condition relative to \(f' \) (i.e., \(x \) is not read, or \(x \) is read and \(f_s(s) \) dominates \(f_o(o) \))
 (ii) if \((s, o, x) \in b \) does not satisfy the simple security condition relative to \(f' \), then \((s, o, x) \notin b' \)
 h. Theorem: \(\Sigma(R, D, W, z_0) \) satisfies the \(* \)-property relative to \(S' \subseteq S \), for any initial state \(z_0 \) that satisfies the \(* \)-property relative to \(S' \) iff \(W \) satisfies the following conditions for each \((r_j, d_j, (b', m', f', h'), (b, m, f, h)) \):
 (i) for each \(s \in S' \), any \((s, o, x) \in b' - b \) satisfies the \(* \)-property with respect to \(f' \)
 (ii) for each \(s \in S' \), if \((s, o, x) \in b \) does not satisfy the \(* \)-property with respect to \(f' \), then \((s, o, x) \notin b' \)
 i. Theorem: \(\Sigma(R, D, W, z_0) \) satisfies the ds-property iff the initial state \(z_0 \) satisfies the ds-property and \(W \) satisfies the following conditions for each action \((r_j, d_j, (b', m', f', h'), (b, m, f, h)) \):
 (i) if \((s, o, x) \in b' - b \), then \(x \in m'[s, o] \);
 (ii) if \((s, o, x) \in b \) and \(x \notin m'[s, o] \) then \((s, o, x) \notin b' \)
 j. Basic Security Theorem: A system \(\Sigma(R, D, W, z_0) \) is secure iff \(z_0 \) is a secure state and \(W \) satisfies the conditions of the above three theorems for each action.

2. BLP: formally
 a. Define ssc-preserving, \(*\)-property-preserving, ds-property-preserving
 b. Define relation \(W(o) \)
 c. Show conditions under which rules are ssc-preserving, \(*\)-property-preserving, ds-property-preserving
 d. Show when adding a state preserves those properties
 e. Example instantiation: get-read for Multics

3. Tranquility
 a. Strong tranquility
 b. Weak tranquility

4. System Z and the controversy

5. Goals of integrity policies