Outline for May 11, 2004

- 1. Simple substitution ciphers
 - a. Discuss breaking Vigenère (Kasiski method).
 - b. Go through one-time pads
- 2. DES
 - a. Product cipher with 64 bits in, 64 bits out, and 16 48-bit round keys generated from 56 bit key
 - b. Note S-boxes are real heart of algorithm
 - c. Differential cryptanalysis: first version unusable as at 16 rounds, more plaintext/ciphertext pairs needed than exhaustive key trial; but for 15 rounds, cuts this time. Later versions cut it to 2⁴⁷ tries. Works by comparing xors of results with xors of corresponding plaintext. Designers of DES knew about this one, hence the design of the S-boxes
 - d. Linear cryptanalysis drops required chosen plaintext/ciphertext pairs to 2⁴²; not known to designers of DES.
 - e. Triple DES and EDE mode
- 3. Public Key
 - a. Requirements
 - i. computationally easy to encipher, decipher
 - ii. computationally infeasible to get private key from public
 - iii. chosen plaintext attack computationally infeasible
 - b. based on NP-hard problems (knapsack)
 - c. based on hard mathematical problems (like factoring)
- 4. Do RSA
 - a. Exponentiation cipher: $C = M^e \mod n$, $M = C^d \mod n$; *d* is private key, (e, n) is public key; must choose *d* first, then *e* so that *ed* mod $\phi(n) = 1$.
 - b. Example: p = 5, q = 7, n = 35, $\phi(n) = 24$; choose e = 11, then d = 11. HELLO WORLD is 07 04 11 11 14 22 14 17 11 03; enciphering is $C = 07^{11} \mod 35 = 28$, *etc.* so encipherment is 28 09 16 16 14 08 14 33 16 12.
 - c. Problems: rearrangement of blocks ("is the attack on?" NO vs. ON); precomputation of possible answers
- 5. Cryptographic checksums
 - a. Requirements
 - b. Keyed vs. keyless cryptographic checksums
 - c. HMAC