Overview

- Safety Question
- HRU Model
- Take-Grant Protection Model
- SPM, ESPM
 - Multiparent joint creation
- Expressive power
- Typed Access Matrix Model

What Is “Secure”?

- Adding a generic right r where there was not one is “leaking”
- If a system S, beginning in initial state s_0, cannot leak right r, it is \textit{safe with respect to the right} r.
Safety Question

• Does there exist an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
 – Here, “safe” = “secure” for an abstract model

Mono-Operational Commands

• Answer: yes
• Sketch of proof:
 Consider minimal sequence of commands c_1, \ldots, c_k to leak the right.
 – Can omit delete, destroy
 – Can merge all creates into one
 Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights, upper bound is $k \leq n(s+1)(o+1)$
General Case

- Answer: *no*
- Sketch of proof:
 Reduce halting problem to safety problem
 Turing Machine review:
 - Infinite tape in one direction
 - States K, symbols M; distinguished blank b
 - Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
 - Halting state is q_f: TM halts when it enters this state

Mapping

- Current state is k

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>(\text{head})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>...</td>
<td>(\text{head})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>\textit{own}</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td>\textit{own}</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>C</td>
<td>k</td>
<td>\textit{own}</td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
Mapping

After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state

Command Mapping

$\delta(k, C) = (k_1, X, R)$ at intermediate becomes

```
command $c_{k,C}(s_3, s_4)$
if own in $A[s_3, s_4]$ and $k$ in $A[s_3, s_3]$ and $C$ in $A[s_3, s_3]$
then
  delete $k$ from $A[s_3, s_3]$;
  delete $C$ from $A[s_3, s_3]$;
  enter $X$ into $A[s_3, s_3]$;
  enter $k_1$ into $A[s_4, s_4]$;
end
```
Mapping

After $\delta(k_1, D) = (k_2, Y, R)$ where k_1 is the current state and k_2 the next state

Command Mapping

$\delta(k_1, D) = (k_2, Y, R)$ at end becomes

```plaintext
command crightmost, c(s_4, s_5)
if end in A[s_4, s_4] and k_1 in A[s_4, s_4] and D in A[s_4, s_4]
then
delete end from A[s_4, s_4];
create subject s_5;
enter own into A[s_4, s_5];
enter end into A[s_5, s_5];
delete k_1 from A[s_4, s_4];
delete D from A[s_4, s_4];
enter Y into A[s_4, s_4];
enter k_2 into A[s_5, s_5];
end
```
Rest of Proof

• Protection system exactly simulates a TM
 – Exactly 1 end right in ACM
 – 1 right in entries corresponds to state
 – Thus, at most 1 applicable command
• If TM enters state q_f, then right has leaked
• If safety question decidable, then represent TM as above and determine if q_f leaks
 – Implies halting problem decidable
• Conclusion: safety question undecidable

Other Results

• Set of unsafe systems is recursively enumerable
• Delete create primitive; then safety question is complete in P-SPACE
• Delete destroy, delete primitives; then safety question is undecidable
 – Systems are monotonic
• Safety question for monoconditional, monotonic protection systems is decidable
• Safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.
Take-Grant Protection Model

- A specific (not generic) system
 - Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

System

- objects (files, …)
- subjects (users, processes, …)
 - don't care (either a subject or an object)

\[G \vdash \ x \ G' \quad \text{apply a rewriting rule } x \ (\text{witness}) \text{ to } G \text{ to get } G' \]
\[G \vdash^* G' \quad \text{apply a sequence of rewriting rules (witness) to } G \text{ to get } G' \]
\[R = \{ t, g, r, w, \ldots \} \quad \text{set of rights} \]
Rules

take

grant

More Rules

create

remove

These four rules are called the *de jure* rules
Symmetry

1. x creates (tg to new) v
2. z takes (g to v) from x
3. z grants (α to y) to v
4. x takes (α to y) from v

Similar result for grant

Islands

- tg-path: path of distinct vertices connected by edges labeled t or g
 - Call them “tg-connected”
- Island: maximal tg-connected subject-only subgraph
 - Any right one vertex has can be shared with any other vertex
Initial, Terminal Spans

- initial span from x to y: x subject, tg-path between x, y with word in $\{ \overline{tg} \} \cup \{ \nu \}$
 - x can give rights it has to y
- terminal span from x to y: x subject, tg-path between x, y with word in $\{ \overline{t^*} \} \cup \{ \nu \}$
 - x can acquire any rights y has

Bridges

- bridge: tg-path between subjects x, y, with associated word in
 $\{ \overline{t^*}, \overline{t^*}, \overline{tg}, \overline{t^*}, \overline{tg}, \overline{t^*} \}$
 - rights can be transferred between the two endpoints
 - not an island as intermediate vertices are objects
Example

- islands: \{ p, u \} \{ w \} \{ y, s' \}
- bridges: u, v, w; w, x, y
- initial span: p (associated word v)
- terminal span: s's (associated word t)

can•share Predicate

Definition:
- can•share(\(r, x, y, G_0 \)) if, and only if, there is a sequence of protection graphs \(G_0, \ldots, G_n \) such that \(G_0 \vdash^* G_n \) using only de jure rules and in \(G_n \) there is an edge from \(x \) to \(y \) labeled \(r \).
can\textbullet share Theorem

- can\textbullet share(r, x, y, G_0) if, and only if, there is an edge from x to y labeled r in G_0, or the following hold simultaneously:
 - There is an s in G_0 with an s-to-y edge labeled r
 - There is a subject x' = x or initially spans to x
 - There is a subject s' = s or terminally spans to s
 - There are islands I_1,\ldots, I_k connected by bridges, and x' in I_1 and s' in I_k

Outline of Proof

- s has r rights over y
- s' acquires r rights over y from s
 - Definition of terminal span
- x' acquires r rights over y from s'
 - Repeated application of sharing among vertices in islands, passing rights along bridges
- x' gives r rights over y to x
 - Definition of initial span
Key Question

• Characterize class of models for which safety is decidable
 – Existence: Take-Grant Protection Model is a member of such a class
 – Universality: In general, question undecidable, so for some models it is not decidable

• What is the dividing line?

Schematic Protection Model

• Type-based model
 – Protection type: entity label determining how control rights affect the entity
 • Set at creation and cannot be changed
 – Ticket: description of a single right over an entity
 • Entity has sets of tickets (called a domain)
 • Ticket is X/r, where X is entity and r right
 – Functions determine rights transfer
 • Link: are source, target “connected”?
 • Filter: is transfer of ticket authorized?
Link Predicate

• Idea: $link_i(X, Y)$ if X can assert some control right over Y
• Conjunction or disjunction of:
 – $X/z \in dom(X)$
 – $X/z \in dom(Y)$
 – $Y/z \in dom(X)$
 – $Y/z \in dom(Y)$
 – true

Examples

• Take-Grant:
 $$link(X, Y) = Y/g \in dom(X) \lor X/t \in dom(Y)$$
• Broadcast:
 $$link(X, Y) = X/b \in dom(X)$$
• Pull:
 $$link(X, Y) = Y/p \in dom(Y)$$
Filter Function

- Range is set of copyable tickets
 - Entity type, right
- Domain is subject pairs
- Copy a ticket \(X/r:c \) from \(dom(Y) \) to \(dom(Z) \)
 - \(X/rc \in dom(Y) \)
 - \(link_i(Y, Z) \)
 - \(\tau(Y)/r:c \in f(\tau(Y), \tau(Z)) \)
- One filter function per link function

Example

- \(f(\tau(Y), \tau(Z)) = T \times R \)
 - Any ticket can be transferred (if other conditions met)
- \(f(\tau(Y), \tau(Z)) = T \times RI \)
 - Only tickets with inert rights can be transferred (if other conditions met)
- \(f(\tau(Y), \tau(Z)) = \emptyset \)
 - No tickets can be transferred
Example

• Take-Grant Protection Model
 – \(TS = \{ \text{subjects} \} \), \(TO = \{ \text{objects} \} \)
 – \(RC = \{ tc, gc \} \), \(RI = \{ rc, wc \} \)
 – \(\text{link}(p, q) = p/t \in \text{dom}(q) \lor q/t \in \text{dom}(p) \)
 – \(f(\text{subject, subject}) = \{ \text{subject, object} \} \times \{ tc, gc, rc, wc \} \)

Create Operation

• Must handle type, tickets of new entity
• Relation can\(\text{create}(a, b) \)
 – Subject of type \(a \) can create entity of type \(b \)
• Rule of acyclic creates:
Types

- $cr(a, b)$: tickets introduced when subject of type a creates entity of type b
- **B** subject: $cr(a, b) \subseteq \{ b/r:c \in RI \}$
- **B** object: $cr(a, b) \subseteq \{ b/r:c \in RI \}$

B subject: $cr(a, b)$ has two parts
- $cr_P(a, b)$ added to **A**, $cr_C(a, b)$ added to **B**
- **A** gets $B/r:c$ if $b/r:c$ in $cr_P(a, b)$
- **B** gets $A/r:c$ if $a/r:c$ in $cr_C(a, b)$

Non-Distinct Types

$cr(a, a)$: who gets what?
- **self/r:c** are tickets for creator
- **a/r:c** tickets for created

$cr(a, a) = \{ a/r:c, self/r:c \mid r:c \in R \}$
Attenuating Create Rule

$cr(a, b)$ attenuating if:

1. $cr_c(a, b) \subseteq cr_p(a, b)$ and
2. $a/r:c \in cr_p(a, b) \Rightarrow self/r:c \in cr_p(a, b)$

Safety Result

- If the scheme is acyclic and attenuating, the safety question is decidable
Expressive Power

• How do the sets of systems that models can describe compare?
 – If HRU equivalent to SPM, SPM provides more specific answer to safety question
 – If HRU describes more systems, SPM applies only to the systems it can describe

HRU vs. SPM

• SPM more abstract
 – Analyses focus on limits of model, not details of representation
• HRU allows revocation
 – SMP has no equivalent to delete, destroy
• HRU allows multiparent creates
 – SPM cannot express multiparent creates easily, and not at all if the parents are of different types because can create allows for only one type of creator
Multiparent Create

- Solves mutual suspicion problem
 - Create proxy jointly, each gives it needed rights
- In HRU:

  ```
  command multicreate(s_0, s_1, o)
  if r in a[s_0, s_1] and r in a[s_1, s_0]
  then
    create object o;
    enter r into a[s_0, o];
    enter r into a[s_1, o];
  end
  ```

SPM and Multiparent Create

- can create extended in obvious way
 - cc ⊆ TS × … × TS × T
- Symbols
 - X_1, …, X_n parents, Y created
 - R_1,i, R_2,i, R_3, R_4,j ⊆ R
- Rules
 - cr_{P,i}(τ(X_1), …, τ(X_n)) = Y/R_{1,i} ∪ X/R_{2,i}
 - cr_{C}(τ(X_1), …, τ(X_n)) = Y/R_3 ∪ X_i/R_{4,1} ∪ … ∪ X_n/R_{4,n}
Example

- Anna, Bill must do something cooperatively
 - But they don’t trust each other
- Jointly create a proxy
 - Each gives proxy only necessary rights
- In ESPM:
 - Anna, Bill type a; proxy type p; right $x \in R$
 - $cc(a, a) = p$
 - $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 - $cr_{proxy}(a, a, p) = \{ Anna/x, Bill/x \}$