Policy Languages

» Express security policies in a precise way
* High-level languages

— Policy constraints expressed abstractly
* Low-level languages

— Policy constraints expressed in terms of
program options, input, or specific
characteristics of entities on system

April 15, 2004 ECS 235 Slide #1

High-Level Policy Languages

* Constraints expressed independent of
enforcement mechanism

e Constraints restrict entities, actions

* Constraints expressed unambiguously

— Requires a precise language, usually a
mathematical, logical, or programming-like
language

April 15, 2004 ECS 235 Slide #2

Example: Web Browser

e Goal: restrict actions of Java programs that
are downloaded and executed under control
of web browser

» Language specific to Java programs

» Expresses constraints as conditions
restricting invocation of entities

April 15, 2004 ECS 235 Slide #3

Expressing Constraints

¢ Entities are classes, methods
— Class: set of objects that an access constraint constrains
— Method: set of ways an operation can be invoked
* Operations
— Instantiation: s creates instance of class c: s -l ¢
— Invocation: s1 executes object s2: sl |— s2
e Access constraints
— deny(s op x) when b

— While b is true, subject s cannot perform op on (subject or class) x;
empty s means all subjects

April 15, 2004 ECS 235 Slide #4

DTEL

* Basis: access can be constrained by types
e Combines elements of low-level, high-level
policy languages
— Implementation-level constructs express
constraints in terms of language types

— Constructs do not express arguments or inputs
to specific system commands

April 15, 2004 ECS 235 Slide #5

Example

e Goal: users cannot write to system binaries

* Subjects in administrative domain can
— User must authenticate to enter that domain
* Subjects belong to domains:

— d_user ordinary users
—d_admin administrative users
—d_login for login

— d_daemon system daemons

April 15, 2004 ECS 235 Slide #6

Types

* Object types:

— t_sysbhin executable system files

— t_readable readable files

— t_writable writable files

— t dte data used by enforcement mechanisms
— t_generic data generated from user processes

* For example, treat these as partitions

— In practice, files can be readable and writable; ignore this for the
example

April 15, 2004 ECS 235 Slide #7

Domain Representation

e Sequence

— First component is list of programs that start in
the domain

— Other components describe rights subject in
domain has over objects of a type

(crwd->t_writable)

means subject can create, read, write, and list
(search) any object of type t_writable

April 15, 2004 ECS 235 Slide #8

d_daemon Domain

domain d daemon = (/sbin/init),
(crwd->t_writable),
(rd->t_generic, t readable, t dte),
(rxd->t_sysbin),
(auto->d_login);
e Compromising subject in d_daemon domain does
not enable attacker to alter system files
— Subjects here have no write access
* When /sbin/init invokes login program, login
program transitions into d_login domain

April 15, 2004 ECS 235 Slide #9

d_admin Domain

domain d_admin =
(/usr/bin/sh, /usr/bin/csh, /usr/bin/ksh),
(crwxd->t _generic),
(crwxd->t readable, t writable, t dte,
t sysbin),

(sigtstp->d_daemon);

* sigtstp allows subjects to suspend processes
in d_daemon domain

e Admin users use a standard command
interpreter

April 15, 2004 ECS 235 Slide #10

d_user Domain

domain d_user =
(/usr/bin/sh, /usr/bin/csh, /usr/bin/ksh),

(crwxd->t_generic),
(rxd->t_sysbin),
(crwd->t_writable),
(rd->t_readable, t_dte);
* No auto component as no user commands transition out of
it

» Users cannot write to system binaries

April 15, 2004 ECS 235 Slide #11

d_login Domain

domain d login =
(/usr/bin/login),
(crwd->t_writable),
(rd->t_readable, t _generic, t dte),
setauth,
(exec->d_user, d_admin);

e Cannot execute anything except the transition
— Only /usr/bin/login in this domain

* setauth enables subject to change UID

e exec access to d_user, d_admin domains

April 15, 2004 ECS 235 Slide #12

Set Up

initial domain = d_daemon;
— System starts in d_daemon domain
assign —r t_generic /;

assign
assign
assign
assign

—-r
—-r
—-Ir
—-Ir

t writable /usr/var, /dev, /tmp;
t_readable /etc;
—s dte_t /dte;
—s t_sysbin /sbin, /bin,
/usr/bin, /usr/sbin;

— These assign initial types to objects
— —r recursively assigns type
— —s binds type to name of object (delete it, recreate it, still of given

type)

April 15, 2004

ECS 235

Slide #13

Add Log Type

* Goal: users can’t modify system logs; only subjects in
d_admin, new d_log domains can
type t readable, t writable, t sysbin,

t dte, t generic, t log;

* New type t_log

domain d_log =
(/usr/sbin/syslogd),
(crwd->t_log),
(rwd->t_writable),
(rd->t_generic, t readable);

e New domain d_log

April 15, 2004

ECS 235

Slide #14

Fix Domain and Set-Up

domain d daemon = (/sbin/init),
(crwd->t_writable),
(rxd->t_readable),
(rd->t_generic, t dte, t_sysbin),
(auto->d_login, d log);

e Subject in d_daemon can invoke logging process

— Can log, but not execute anything
assign -r t_log /usr/var/log;

assign t_writable /usr/var/log/wtmp,
/usr/var/log/utmp;

e Set type of logs

April 15, 2004 ECS 235 Slide #15

Low-Level Policy Languages

 Set of inputs or arguments to commands
— Check or set constraints on system
e Low level of abstraction

— Need details of system, commands

April 15, 2004 ECS 235 Slide #16

Example: X Window System

UNIX X11 Windowing System
Access to X11 display controlled by list

— List says what hosts allowed, disallowed access

xhost +groucho -chico

Connections from host groucho allowed

Connections from host chico not allowed

April 15, 2004 ECS 235 Slide #17

Example: tripwire

* File scanner that reports changes to file
system and file attributes
— tw.config describes what may change

/usr/mab/tripwire +gimnpsu012345678-a
* Check everything but time of last access (“-a”)

— database holds previous values of attributes

April 15, 2004 ECS 235 Slide #18

Example Database Record

/usr/mab/tripwire/README 0/. 100600 45763 1
917 10 33242 .gtPvf .gtPvY .gtPvY O
.ZD4ccOWr8i21zZKaI..LUOr3
.0fwo5:hf4e4.8TAqd0OV4ubv ?...... «..9b3
1M4GX01xbGIX00oVuGolhl5z3
?:Y9jfal04rdzM1lqg:eqt1APgHk
? .Eb9yo0.2zkEh1XKovX1l:dOwFO0kfAvC
?1M4GX01xbGIX2947jdyrior38hl5z3 0

e file name, version, bitmask for attributes, mode,
inode number, number of links, UID, GID, size,
times of creation, last modification, last access,
cryptographic checksums

April 15, 2004 ECS 235 Slide #19

Comments

* System administrators not expected to edit database to set
attributes properly
* Checking for changes with tripwire is easy
— Just run once to create the database, run again to check

* Checking for conformance to policy is harder

— Need to either edit database file, or (better) set system up to
conform to policy, then run tripwire to construct database

April 15, 2004 ECS 235 Slide #20

10

Example English Policy

e Computer security policy for academic
Institution

— Institution has multiple campuses, administered
from central office

— Each campus has its own administration, and
unique aspects and needs

* Authorized Use Policy
 Electronic Mail Policy

April 15, 2004 ECS 235 Slide #21

Authorized Use Policy

Intended for one campus (Davis) only

Goals of campus computing
— Underlying intent

Procedural enforcement mechanisms
— Warnings
— Denial of computer access
— Disciplinary action up to and including expulsion

Written informally, aimed at user community

April 15, 2004 ECS 235 Slide #22

11

Electronic Mail Policy

» Systemwide, not just one campus

e Three parts
— Summary
— Full policy

— Interpretation at the campus

April 15, 2004 ECS 235 Slide #23

Summary

* Warns that electronic mail not private

— Can be read during normal system
administration

— Can be forged, altered, and forwarded
* Unusual because the policy alerts users to
the threats

— Usually, policies say how to prevent problems,
but do not define the threats

April 15, 2004 ECS 235 Slide #24

12

Summary

e What users should and should not do
— Think before you send
— Be courteous, respectful of others
— Don’t interfere with others’ use of email

* Personal use okay, provided overhead minimal

* Who it applies to

— Problem is UC is quasi-governmental, so is bound by rules that
private companies may not be

— Educational mission also affects application

April 15, 2004 ECS 235 Slide #25

Full Policy

* Context
— Does not apply to Dept. of Energy labs run by the university
— Does not apply to printed copies of email
¢ Other policies apply here
* E-mail, infrastructure are university property
— Principles of academic freedom, freedom of speech apply

— Access without user’s permission requires approval of vice
chancellor of campus or vice president of UC

— If infeasible, must get permission retroactively

April 15, 2004 ECS 235 Slide #26

13

Uses of E-mail

e Anonymity allowed

— Provided it doesn’t break laws or other policies
e Can’t interfere with others’ use of e-mail

— No spam, letter bombs, e-mailed worms, etc.
e Personal e-mail allowed within limits

— Cannot interfere with university business

— Such e-mail may be a “university record”
subject to disclosure

April 15, 2004 ECS 235 Slide #27

Security of E-mail

e University can read e-mail
— Won’t go out of its way to do so
— Allowed for legitimate business purposes
— Allowed to keep e-mail robust, reliable

e Archiving and retention allowed

— May be able to recover e-mail from end system
(backed up, for example)

April 15, 2004 ECS 235 Slide #28

14

Implementation

e Adds campus-specific requirements and
procedures

— Example: “incidental personal use” not allowed if it
benefits a non-university organization

— Allows implementation to take into account differences
between campuses, such as self-governance by
Academic Senate

* Procedures for inspecting, monitoring, disclosing
e-mail contents

e Backups

April 15, 2004 ECS 235 Slide #29

Confidentiality Policy

e Goal: prevent the unauthorized disclosure of
information
— Deals with information flow
— Integrity incidental

e Multi-level security models are best-known
examples

— Bell-LaPadula Model basis for many, or most,
of these

April 15, 2004 ECS 235 Slide #30

15

Bell-LaPadula Model, Step 1

* Security levels arranged in linear ordering

— Top Secret: highest

— Secret

— Confidential

— Unclassified: lowest

* Levels consist of security clearance L(s)

— Objects have security classification L(0)

April 15, 2004

ECS 235

Slide #31

Example
security level subject | object
Top Secret Tamara |Personnel Files
Secret Samuel |E-Mail Files
Confidential Claire Activity Logs
Unclassified Ulaley Telephone Lists

e Tamara can read all files

¢ Claire cannot read Personnel or E-Mail Files

¢ Ulaley can only read Telephone Lists

April 15, 2004

ECS 235

Slide #32

16

Reading Information

 Information flows up, not down
— “Reads up” disallowed, “reads down” allowed
» Simple Security Condition (Step 1)

— Subject s can read object o iff, L(0o) < L(s) and s
has permission to read o

* Note: combines mandatory control (relationship of
security levels) and discretionary control (the
required permission)

— Sometimes called “no reads up” rule

April 15, 2004 ECS 235 Slide #33

Writing Information

 Information flows up, not down
— “Writes up” allowed, “writes down” disallowed
e *-Property (Step 1)

— Subject s can write object o iff L(s) < L(o) and s
has permission to write o

* Note: combines mandatory control (relationship of
security levels) and discretionary control (the
required permission)

— Sometimes called “no writes down” rule

April 15, 2004 ECS 235 Slide #34

17

Basic Security Theorem, Step 1

 If a system is initially in a secure state, and
every transition of the system satisfies the
simple security condition, step 1, and the *-
property, step 1, then every state of the
system is secure

— Proof: induct on the number of transitions

April 15, 2004 ECS 235 Slide #35

Bell-LaPadula Model, Step 2

* Expand notion of security level to include
categories

» Security level is (clearance, category set)

e Examples

— (Top Secret, { Nuc, Eur, Asi })
— (Confidential, { Eur, Asi })
— (Secret, { Nuc, Asi })

April 15, 2004 ECS 235 Slide #36

18

Overview

 Lattices used to analyze Bell-LaPadula,
Biba constructions

e Consists of a set and a relation

e Relation must partially order set

— Partial ordering < orders some, but not all,
elements of set

April 15, 2004 ECS 235 Slide #37

Sets and Relations

e §set, R: xS relation

—Ifa, b€ S, and (a, b) € R, write aRb
e Example

—I1={1,2,3}; relation Ris <

-R={(1,1),(1,2),(1,3),(2,2),(2,3),3,3) }
—Sowewritel <2and 3<3butnot3 <2

April 15, 2004 ECS 235 Slide #38

19

Relation Properties

¢ Reflexive
— Forall a €S, aRa

— Onl, <isreflexiveas 1 <1,2<2,3<3

* Antisymmetric
— Foralla, b&€S, aRb A bRa=a=>b

— On [, <is antisymmetric

e Transitive
— Forall a, b, c €S, aRb A bRc = aRc

— On/,<istransitiveas] <2and2 <3 means 1 <3

April 15, 2004 ECS 235 Slide #39

Bigger Example

C set of complex numbers

* a € C=a=ay+aji, ag, aintegers

a <. bif, and only if, ap < by and q, < b,

a < . b 1s reflexive, antisymmetric,
transitive

— As <is over itegers, and ap , apare Itegers

April 15, 2004 ECS 235 Slide #40

20

Partial Ordering

e Relation R orders some members of set S
— If all ordered, it’s total ordering

e Example
— < on integers is total ordering

— <. 1s partial ordering on C (because neither
3+5i < 4+2i nor 4+2i <~ 3+5i holds)

April 15, 2004 ECS 235 Slide #41

Upper Bounds

e Fora, b€ S, if u in S with aRu, bRu exists,
then u is upper bound

— Least upper if there is no ¢ €S such that aRt,
bRt, and tRu

e Example

— For 1 + 54, 2 + 4i € C, upper bounds include
2+ 51,3+ 8i,and 9 + 100¢

— Least upper bound of those is 2 + 5i

April 15, 2004 ECS 235 Slide #42

21

Lower Bounds

e Fora, b& S, if [in S with [Ra, [Rb exists,
then [1s lower bound
— Greatest lower if there is no ¢ €S such that 7Ra,
tRb, and [Rt
e Example

— For 1 + 5i, 2 + 4i € C, lower bounds include 0,
—1+2i,1+1i,and 1 +4i

— Greatest lower bound of those is 1 + 41

April 15, 2004 ECS 235 Slide #43

Lattices

e Set S, relation R

— R is reflexive, antisymmetric, transitive on
elements of S

— For every s, t € S, there exists a greatest lower
bound under R

— For every s, t €S, there exists a least upper
bound under R

April 15, 2004 ECS 235 Slide #44

22

Example

* C, <. form a lattice

— As shown earlier, <. is reflexive, antisymmetric,
and transitive
— Least upper bound for a and b:
* cp = max(ag, bg), c,=max(a, b)); then c = cp + ¢i
— Greatest lower bound for a and b:

* cp =min(ay, by), c,=min(a,, b)); then c = c, + ¢;i

April 15, 2004 ECS 235 Slide #45

Picture

2+5i

N

1+5i 2+4i

e

v
1+4i

Arrows represent <.,

April 15, 2004 ECS 235 Slide #46

23

Levels and Lattices

e (A,C)dom (A, CHiff A <Aand C"C C

e Examples
— (Top Secret, {Nuc,Asi}) dom (Secret, {Nuc})
— (Secret, {Nuc, Eur}) dom (Confidential,{Nuc,Eur})
— (Top Secret, {Nuc}) =dom (Confidential, {Eur})

* Let C be set of classifications, K set of categories.
Set of security levels L = C x K, dom form lattice
— lub(L) = (max(A), C)
— glb(L) = (min(A), D)

April 15, 2004 ECS 235 Slide #47

Levels and Ordering

 Security levels partially ordered

— Any pair of security levels may (or may not) be
related by dom

e “dominates” serves the role of “greater than”
in step 1
— “greater than” is a total ordering, though

April 15, 2004 ECS 235 Slide #48

24

Reading Information

 Information flows up, not down
— “Reads up” disallowed, “reads down” allowed
» Simple Security Condition (Step 2)

— Subject s can read object o iff L(s) dom L(0)
and s has permission to read o

* Note: combines mandatory control (relationship of
security levels) and discretionary control (the
required permission)

— Sometimes called “no reads up” rule

April 15, 2004 ECS 235 Slide #49

Writing Information

 Information flows up, not down
— “Writes up” allowed, “writes down” disallowed
» *-Property (Step 2)

— Subject s can write object o iff L(o) dom L(s)
and s has permission to write o

* Note: combines mandatory control (relationship of
security levels) and discretionary control (the
required permission)

— Sometimes called “no writes down” rule

April 15, 2004 ECS 235 Slide #50

25

Basic Security Theorem, Step 2

e If a system is initially in a secure state, and every
transition of the system satisfies the simple
security condition, step 2, and the *-property, step
2, then every state of the system is secure

— Proof: induct on the number of transitions

— In actual Basic Security Theorem, discretionary access
control treated as third property, and simple security
property and *-property phrased to eliminate
discretionary part of the definitions — but simpler to
express the way done here.

April 15, 2004 ECS 235 Slide #51

Problem

e Colonel has (Secret, {Nuc, Eur}) clearance
e Major has (Secret, {Eur}) clearance

— Major can talk to colonel (“write up” or “read
down”)

— Colonel cannot talk to major (“read up” or
“write down™)

* Clearly absurd!

April 15, 2004 ECS 235 Slide #52

26

Solution

e Define maximum, current levels for subjects
— maxlevel(s) dom curlevel(s)

e Example
— Treat Major as an object (Colonel is writing to him/her)
— Colonel has maxlevel (Secret, {Nuc, Eur})
— Colonel sets curlevel to (Secret, { Eur })
— Now L(Major) dom curlevel(Colonel)

* Colonel can write to Major without violating “no writes down”
— Does L(s) mean curlevel(s) or maxlevel(s)?
* Formally, we need a more precise notation

April 15, 2004 ECS 235 Slide #53

DG/UX System

* Provides mandatory access controls
— MAC label identifies security level
— Default labels, but can define others

* Initially
— Subjects assigned MAC label of parent

* Initial label assigned to user, kept in Authorization and
Authentication database

— Object assigned label at creation
» Explicit labels stored as part of attributes
* Implicit labels determined from parent directory

April 15, 2004 ECS 235 Slide #54

27

MAC Regions

A&A database, audit Administrative Region

Hierarchy . -
levels User data and applications User Region

VP-1 Site executables

Vp_z__Trusted data Virus Prevention Region

VP-3 Executables not part of the TCB

VP-4 Executables part of the TCB

VP-5 Reserved for future use

IMPL_HI is “maximum” (least upper bound) of all levels
IMPL_LO is “minimum” (greatest lower bound) of all levels

April 15, 2004

Categories

ECS 235

Directory Problem

* Process p at MAC_A tries to create file /tmp/x
e /tmp/x exists but has MAC label MAC_B

— Assume MAC_B dom MAC_A
¢ Create fails

— Now p knows a file named x with a higher label exists

* Fix: only programs with same MAC label as directory can

create files in the directory

— Now compilation won’t work, mail can’t be delivered

April 15, 2004

ECS 235

28

Multilevel Directory

* Directory with a set of subdirectories, one per
label
— Not normally visible to user

— p creating /tmp/x actually creates /tmp/d/x where d is
directory corresponding to MAC_A

— All p’s references to /tmp go to /tmp/d
e pcd’s to /tmp/a, then to ..

— System call stat(““.”, &buf) returns inode number of real
directory

— System call dg_stat(““.”, &buf) returns inode of /tmpl

April 15, 2004 ECS 235 Slide #57

29

