
1

April 20, 2004 ECS 235 Slide #1

DG/UX System
• Provides mandatory access controls

– MAC label identifies security level
– Default labels, but can define others

• Initially
– Subjects assigned MAC label of parent

• Initial label assigned to user, kept in Authorization and
Authentication database

– Object assigned label at creation
• Explicit labels stored as part of attributes
• Implicit labels determined from parent directory

April 20, 2004 ECS 235 Slide #2

MAC Regions

Administrative RegionA&A database, audit

User data and applications User RegionHierarchy
levels

VP–1
VP–2
VP–3
VP–4

Site executables
Trusted data
Executables not part of the TCB

Reserved for future use

Virus Prevention Region

Categories
VP–5

Executables part of the TCB

IMPL_HI is “maximum” (least upper bound) of all levels
IMPL_LO is “minimum” (greatest lower bound) of all levels

2

April 20, 2004 ECS 235 Slide #3

Directory Problem
• Process p at MAC_A tries to create file /tmp/x
• /tmp/x exists but has MAC label MAC_B

– Assume MAC_B dom MAC_A
• Create fails

– Now p knows a file named x with a higher label exists
• Fix: only programs with same MAC label as directory can

create files in the directory
– Now compilation won’t work, mail can’t be delivered

April 20, 2004 ECS 235 Slide #4

Multilevel Directory
• Directory with a set of subdirectories, one per

label
– Not normally visible to user
– p creating /tmp/x actually creates /tmp/d/x where d is

directory corresponding to MAC_A
– All p’s references to /tmp go to /tmp/d

• p cd’s to /tmp/a, then to ..
– System call stat(“.”, &buf) returns inode number of real

directory
– System call dg_stat(“.”, &buf) returns inode of /tmp

3

April 20, 2004 ECS 235 Slide #5

Object Labels

• Requirement: every file system object
must have MAC label

1. Roots of file systems have explicit MAC
labels
• If mounted file system has no label, it gets

label of mount point
2. Object with implicit MAC label inherits

label of parent

April 20, 2004 ECS 235 Slide #6

Object Labels
• Problem: object has two names

– /x/y/z, /a/b/c refer to same object
– y has explicit label IMPL_HI, b has explicit label IMPL_B

• Case 1: hard link created while file system on DG/UX
system

3. Creating hard link requires explicit label
• If implicit, label made explicit
• Moving a file makes label explicit

4

April 20, 2004 ECS 235 Slide #7

Object Labels

• Case 2: hard link exists when file system
mounted

– No objects on paths have explicit labels: paths
have same implicit labels

– An object on path acquires an explicit label:
implicit label of child must be preserved

4. Change to directory label makes child
labels explicit before the change

April 20, 2004 ECS 235 Slide #8

Object Labels

• Symbolic links are files, and treated as
such

5. When resolving symbolic link, label of
object is label of target of the link

• System needs access to the symbolic link
itself

5

April 20, 2004 ECS 235 Slide #9

Using MAC Labels

• Simple security condition implemented
• *-property not fully implemented

– Process MAC must equal object MAC
– Writing allowed only at same security level

• Overly restrictive in practice

April 20, 2004 ECS 235 Slide #10

MAC Tuples
• Up to 3 MAC ranges (one per region)
• MAC range is a set of labels with upper, lower bound

– Upper bound must dominate lower bound of range
• Examples

1. [(Secret, {NUC}), (Top Secret, {NUC})]
2. [(Secret, ∅), (Top Secret, {NUC, EUR, ASI})]
3. [(Confidential, {ASI}), (Secret, {NUC, ASI})]

6

April 20, 2004 ECS 235 Slide #11

MAC Ranges
1. [(Secret, {NUC}), (Top Secret, {NUC})]
2. [(Secret, ∅), (Top Secret, {NUC, EUR, ASI})]
3. [(Confidential, {ASI}), (Secret, {NUC, ASI})]
• (Top Secret, {NUC}) in ranges 1, 2
• (Secret, {NUC, ASI}) in ranges 2, 3
• [(Secret, {ASI}), (Top Secret, {EUR})] not valid range

– as (Top Secret, {EUR}) ¬dom (Secret, {ASI})

April 20, 2004 ECS 235 Slide #12

Objects and Tuples

• Objects must have MAC labels
– May also have MAC label
– If both, tuple overrides label

• Example
– Paper has MAC range:

[(Secret, {EUR}), (Top Secret, {NUC, EUR})]

7

April 20, 2004 ECS 235 Slide #13

MAC Tuples
• Process can read object when:

– Object MAC range (lr, hr); process MAC label pl
– pl dom hr

• Process MAC label grants read access to upper bound of range
• Example

– Peter, with label (Secret, {EUR}), cannot read paper
• (Top Secret, {NUC, EUR}) dom (Secret, {EUR})

– Paul, with label (Top Secret, {NUC, EUR, ASI}) can read paper
• (Top Secret, {NUC, EUR, ASI}) dom (Top Secret, {NUC, EUR})

April 20, 2004 ECS 235 Slide #14

MAC Tuples
• Process can write object when:

– Object MAC range (lr, hr); process MAC label pl
– pl ∈ (lr, hr)

• Process MAC label grants write access to any label in range
• Example

– Peter, with label (Secret, {EUR}), can write paper
• (Top Secret, {NUC, EUR}) dom (Secret, {EUR}) and (Secret, {EUR})

dom (Secret, {EUR})
– Paul, with label (Top Secret, {NUC, EUR, ASI}), cannot read

paper
• (Top Secret, {NUC, EUR, ASI}) dom (Top Secret, {NUC, EUR})

8

April 20, 2004 ECS 235 Slide #15

Formal Model Definitions
• S subjects, O objects, P rights

– Defined rights: r read, a write, w read/write, e empty
• M set of possible access control matrices
• C set of clearances/classifications, K set of

categories, L = C × K set of security levels
• F = { (fs, fo, fc) }

– fs(s) maximum security level of subject s
– fc(s) current security level of subject s
– fo(o) security level of object o

April 20, 2004 ECS 235 Slide #16

More Definitions
• Hierarchy functions H: O→P(O)
• Requirements

1. oi ≠ oj ⇒ h(oi) ∩ h(oj) = ∅
2. There is no set { o1, …, ok } ⊆ O such that, for i = 1, …, k, oi+1

∈h(oi) and ok+1 = o1.
• Example

– Tree hierarchy; take h(o) to be the set of children of o
– No two objects have any common children (#1)
– There are no loops in the tree (#2)

9

April 20, 2004 ECS 235 Slide #17

States and Requests

• V set of states
– Each state is (b, m, f, h)

• b is like m, but excludes rights not allowed by f
• R set of requests for access
• D set of outcomes

– y allowed, n not allowed, i illegal, o error
• W set of actions of the system

– W ⊆ R × D × V × V

April 20, 2004 ECS 235 Slide #18

History
• X = RN set of sequences of requests
• Y = DN set of sequences of decisions
• Z = VN set of sequences of states
• Interpretation

– At time t ∈ N, system is in state zt–1 ∈V; request xt ∈R causes
system to make decision yt ∈D, transitioning the system into a
(possibly new) state zt ∈V

• System representation: Σ(R, D, W, z0) ∈X × Y × Z
– (x, y, z) ∈Σ(R, D, W, z0) iff (xt, yt, zt–1, zt) ∈W for all t
– (x, y, z) called an appearance of Σ(R, D, W, z0)

10

April 20, 2004 ECS 235 Slide #19

Example
• S = { s }, O = { o }, P = { r, w }
• C = { High, Low }, K = { All }
• For every f ∈ F, either fc(s) = (High, { All }) or fc(s) = (

Low, { All })
• Initial State:

– b1 = { (s, o, r) }, m1 ∈ M gives s read access over o, and for f1 ∈ F,
fc,1(s) = (High, {All}), fo,1(o) = (Low, {All})

– Call this state v0 = (b1, m1, f1, h1) ∈ V.

April 20, 2004 ECS 235 Slide #20

First Transition
• Now suppose in state v0: S = { s, s´ }
• Suppose fc,1(s´) = (Low, {All})
• m1 ∈ M gives s and s´ read access over o
• As s´ not written to o, b1 = { (s, o, r) }
• z0 = v0; if s´ requests r1 to write to o:

– System decides d1 = y
– New state v1 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s´, o, w) }
– Here, x = (r1), y = (y), z = (v0, v1)

11

April 20, 2004 ECS 235 Slide #21

Second Transition
• Current state v1 = (b2, m1, f1, h1) ∈ V

– b2 = { (s, o, r), (s´, o, w) }
– fc,1(s) = (High, { All }), fo,1(o) = (Low, { All })

• s´ requests r2 to write to o:
– System decides d2 = n (as fc,1(s) dom fo,1(o))
– New state v2 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s´, o, w) }
– So, x = (r1, r2), y = (y, n), z = (v0, v1, v2), where v2 = v1

