
1

April 27, 2004 ECS 235 Slide #1

Basic Security Theorem

• Define action, secure formally
– Using a bit of foreshadowing for “secure”

• Restate properties formally
– Simple security condition
– *-property
– Discretionary security property

• State conditions for properties to hold
• State Basic Security Theorem

April 27, 2004 ECS 235 Slide #2

Action
• A request and decision that causes the system to

move from one state to another
– Final state may be the same as initial state

• (r, d, v, v´) ∈ R × D × V × V is an action of Σ(R, D,
W, z0) iff there is an (x, y, z) ∈ Σ(R, D, W, z0) and
a t ∈ N such that (r, d, v, v´) = (xt, yt, zt, zt–1)
– Request r made when system in state v; decision d

moves system into (possibly the same) state v´
– Correspondence with (xt, yt, zt, zt–1) makes states,

requests, part of a sequence

2

April 27, 2004 ECS 235 Slide #3

Simple Security Condition
• (s, o, p) ∈ S × O × P satisfies the simple security

condition relative to f (written ssc rel f) iff one of the
following holds:

1. p = e or p = a
2. p = r or p = w and fc(s) dom fo(o)

• Holds vacuously if rights do not involve reading
• If all elements of b satisfy ssc rel f, then state satisfies

simple security condition
• If all states satisfy simple security condition, system

satisfies simple security condition

April 27, 2004 ECS 235 Slide #4

Necessary and Sufficient
• Σ(R, D, W, z0) satisfies the simple security

condition for any secure state z0 iff for every
action (r, d, (b, m, f, h), (b´, m´, f´, h´)), W satisfies
– Every (s, o, p) ∈ b – b´ satisfies ssc rel f
– Every (s, o, p) ∈ b´ that does not satisfy ssc rel f is not

in b
• Note: “secure” means z0 satisfies ssc rel f
• First says every (s, o, p) added satisfies ssc rel f;

second says any (s, o, p) in b´ that does not satisfy
ssc rel f is deleted

3

April 27, 2004 ECS 235 Slide #5

*-Property
• b(s: p1, …, pn) set of all objects that s has p1, …, pn

access to
• State (b, m, f, h) satisfies the *-property iff for each s ∈ S

the following hold:
1. b(s: a) ≠ ∅ ⇒ [∀o ∈b(s: a) [fo(o) dom fc(s)]]
2. b(s: w) ≠ ∅ ⇒ [∀o ∈b(s: w) [fo(o) = fc(s)]]
3. b(s: r) ≠ ∅ ⇒ [∀o ∈b(s: r) [fc(s) dom fo(o)]]

• Idea: for writing, object dominates subject; for reading,
subject dominates object

April 27, 2004 ECS 235 Slide #6

*-Property

• If all states satisfy simple security condition,
system satisfies simple security condition

• If a subset S´ of subjects satisfy *-property,
then *-property satisfied relative to S´ ⊆ S

• Note: tempting to conclude that *-property
includes simple security condition, but this
is false
– See condition placed on w right for each

4

April 27, 2004 ECS 235 Slide #7

Necessary and Sufficient
• Σ(R, D, W, z0) satisfies the *-property relative to S´ ⊆ S

for any secure state z0 iff for every action (r, d, (b, m, f, h),
(b´, m´, f´, h´)), W satisfies the following for every s ∈ S´
– Every (s, o, p) ∈ b – b´ satisfies the *-property relative to S´
– Every (s, o, p) ∈ b´ that does not satisfy the *-property relative to

S´ is not in b
• Note: “secure” means z0 satisfies *-property relative to S´
• First says every (s, o, p) added satisfies the *-property

relative to S´; second says any (s, o, p) in b´ that does not
satisfy the *-property relative to S´ is deleted

April 27, 2004 ECS 235 Slide #8

Discretionary Security Property
• State (b, m, f, h) satisfies the discretionary

security property iff, for each (s, o, p) ∈b, then
p ∈ m[s, o]

• Idea: if s can read o, then it must have rights to
do so in the access control matrix m

• This is the discretionary access control part of
the model
– The other two properties are the mandatory access

control parts of the model

5

April 27, 2004 ECS 235 Slide #9

Necessary and Sufficient
• Σ(R, D, W, z0) satisfies the ds-property for any

secure state z0 iff, for every action (r, d, (b, m, f, h),
(b´, m´, f´, h´)), W satisfies:
– Every (s, o, p) ∈ b – b´ satisfies the ds-property
– Every (s, o, p) ∈ b´ that does not satisfy the ds-property

is not in b
• Note: “secure” means z0 satisfies ds-property
• First says every (s, o, p) added satisfies the ds-

property; second says any (s, o, p) in b´ that does
not satisfy the *-property is deleted

April 27, 2004 ECS 235 Slide #10

Secure

• A system is secure iff it satisfies:
– Simple security condition
– *-property
– Discretionary security property

• A state meeting these three properties is
also said to be secure

6

April 27, 2004 ECS 235 Slide #11

Basic Security Theorem

• Σ(R, D, W, z0) is a secure system if z0 is a
secure state and W satisfies the conditions
for the preceding three theorems
– The theorems are on the slides titled

“Necessary and Sufficient”

April 27, 2004 ECS 235 Slide #12

Rule
• ρ: R × V → D × V
• Takes a state and a request, returns a decision and a

(possibly new) state
• Rule ρ ssc-preserving if for all (r, v) ∈ R × V and v

satisfying ssc rel f, ρ(r, v) = (d, v´) means that v´ satisfies
ssc rel f´.
– Similar definitions for *-property, ds-property
– If rule meets all 3 conditions, it is security-preserving

7

April 27, 2004 ECS 235 Slide #13

Unambiguous Rule Selection
• Problem: multiple rules may apply to a request in

a state
– if two rules act on a read request in state v …

• Solution: define relation W(ω) for a set of rules
ω = { ρ1, …, ρm } such that a state (r, d, v, v´) ∈
W(ω) iff either
– d = i; or
– for exactly one integer j, ρj(r, v) = (d, v´)

• Either request is illegal, or only one rule applies

April 27, 2004 ECS 235 Slide #14

Rules Preserving SSC
• Let ω be set of ssc-preserving rules. Let state z0

satisfy simple security condition. Then Σ(R, D,
W(ω), z0) satisfies simple security condition
– Proof: by contradiction.

• Choose (x, y, z) ∈ Σ(R, D, W(ω), z0) as state not satisfying
simple security condition; then choose t ∈N such that (xt, yt, zt)
is first appearance not meeting simple security condition

• As (xt, yt, zt, zt–1) ∈ W(ω), there is unique rule ρ ∈ ω such that
ρ(xt, zt–1) = (yt, zt) and yt ≠ i.

• As ρ ssc-preserving, and zt–1 satisfies simple security condition,
then zt meets simple security condition, contradiction.

8

April 27, 2004 ECS 235 Slide #15

Adding States Preserving SSC
• Let v = (b, m, f, h) satisfy simple security condition. Let (s,

o, p) ∉ b, b´ = b ∪ { (s, o, p) }, and v´ = (b´, m, f, h). Then
v´ satisfies simple security condition iff:

1. Either p = e or p = a; or
2. Either p = r or p = w, and fc(s) dom fo(o)
– Proof

1. Immediate from definition of simple security condition and v´
satisfying ssc rel f

2. v´ satisfies simple security condition means fc(s) dom fo(o), and
for converse, (s, o, p) ∈ b´ satisfies ssc rel f, so v´ satisfies simple
security condition

April 27, 2004 ECS 235 Slide #16

Rules, States Preserving *-
Property

• Let ω be set of *-property-preserving rules, state
z0 satisfies *-property. Then Σ(R, D, W(ω), z0)
satisfies *-property

• Let v = (b, m, f, h) satisfy *-property. Let (s, o, p)
∉ b, b´ = b ∪ { (s, o, p) }, and v´ = (b´, m, f, h).
Then v´ satisfies *-property iff one of the
following holds:
1. p = e or p = a
2. p = r or p = w and fc(s) dom fo(o)

9

April 27, 2004 ECS 235 Slide #17

Rules, States Preserving ds-
Property

• Let ω be set of ds-property-preserving rules, state
z0 satisfies ds-property. Then Σ(R, D, W(ω), z0)
satisfies ds-property

• Let v = (b, m, f, h) satisfy ds-property. Let (s, o, p)
∉ b, b´ = b ∪ { (s, o, p) }, and v´ = (b´, m, f, h).
Then v´ satisfies ds-property iff p ∈ m[s, o].

April 27, 2004 ECS 235 Slide #18

Combining
• Let ρ be a rule and ρ(r, v) = (d, v´), where v = (b,

m, f, h) and v´ = (b´, m´, f´, h´). Then:
1. If b´ ⊆ b, f´ = f, and v satisfies the simple security

condition, then v´ satisfies the simple security
condition

2. If b´ ⊆ b, f´ = f, and v satisfies the *-property, then
v´ satisfies the *-property

3. If b´ ⊆b, m[s, o] ⊆ m´[s, o] for all s ∈ S and o ∈O,
and v satisfies the ds-property, then v´ satisfies the
ds-property

10

April 27, 2004 ECS 235 Slide #19

Proof
1. Suppose v satisfies simple security property.

a) b´ ⊆ b and (s, o, r) ∈ b´ implies (s, o, r) ∈ b
b) b´ ⊆ b and (s, o, w) ∈ b´ implies (s, o, w) ∈ b
c) So fc(s) dom fo(o)
d) But f´ = f
e) Hence f´c(s) dom f´o(o)
f) So v´ satisfies simple security condition

2, 3 proved similarly

April 27, 2004 ECS 235 Slide #20

Example Instantiation: Multics
• 11 rules affect rights:

– set to request, release access
– set to give, remove access to different subject
– set to create, reclassify objects
– set to remove objects
– set to change subject security level

• Set of “trusted” subjects ST ⊆ S
– *-property not enforced; subjects trusted not to violate

• Δ(ρ) domain
– determines if components of request are valid

11

April 27, 2004 ECS 235 Slide #21

get-read Rule
• Request r = (get, s, o, r)

– s gets (requests) the right to read o
• Rule is ρ1(r, v):

if (r ≠ Δ(ρ1)) then ρ1(r, v) = (i, v);
else if (fs(s) dom fo(o) and [s ∈ST or fc(s) dom fo(o)]

and r ∈ m[s, o])
then ρ1(r, v) = (y, (b ∪ { (s, o, r) }, m, f, h));

else ρ1(r, v) = (n, v);

April 27, 2004 ECS 235 Slide #22

Security of Rule

• The get-read rule preserves the simple
security condition, the *-property, and the
ds-property
– Proof

• Let v satisfy all conditions. Let ρ1(r, v) = (d, v´). If
v´ = v result is trivial. So let v´ = (b ∪ { (s2, o, r) },
m, f, h).

12

April 27, 2004 ECS 235 Slide #23

Proof
• Consider the simple security condition.

– From the choice of v´, either b´ – b = ∅∆ or b´ – b = { (s2, o, r) }
– If b´ – b = ∅, then { (s2, o, r) } ∈ b, so v = v´, proving that v´

satisfies the simple security condition.
– If b´ – b = { (s2, o, r) }, because the get-read rule requires that fc(s)

dom fo(o), an earlier result says that v´ satisfies the simple security
condition.

April 27, 2004 ECS 235 Slide #24

Proof

• Consider the *-property.
– Either s2 ∈ ST or fc(s) dom fo(o) from the definition of

get-read
– If s2 ∈ ST, then s2 is trusted, so *-property holds by

definition of trusted and ST.
– If fc(s) dom fo(o), an earlier result says that v´ satisfies

the simple security condition.

13

April 27, 2004 ECS 235 Slide #25

Proof
• Consider the discretionary security property.

– Conditions in the get-read rule require r ∈ m[s, o] and either b´ – b
= ∅ or b´ – b = { (s2, o, r) }

– If b´ – b = ∅, then { (s2, o, r) } ∈ b, so v = v´, proving that v´
satisfies the simple security condition.

– If b´ – b = { (s2, o, r) }, then { (s2, o, r) } ∉ b, an earlier result says
that v´ satisfies the ds-property.

April 27, 2004 ECS 235 Slide #26

give-read Rule
• Request r = (s1, give, s2, o, r)

– s1 gives (request to give) s2 the (discretionary) right to read o
– Rule: can be done if giver can alter parent of object

• If object or parent is root of hierarchy, special authorization required
• Useful definitions

– root(o): root object of hierarchy h containing o
– parent(o): parent of o in h (so o ∈ h(parent(o)))
– canallow(s, o, v): s specially authorized to grant access when

object or parent of object is root of hierarchy
– m∧m[s, o] ← r: access control matrix m with r added to m[s, o]

14

April 27, 2004 ECS 235 Slide #27

give-read Rule
• Rule is ρ6(r, v):

if (r ≠ Δ(ρ6)) then ρ6(r, v) = (i, v);
else if ([o ≠ root(o) and parent(o) ≠ root(o) and parent(o)
∈ b(s1:w)] or
[parent(o) = root(o) and canallow(s1, o, v)] or
[o = root(o) and canallow(s1, o, v)])

then ρ6(r, v) = (y, (b, m∧m[s2, o] ← r, f, h));
else ρ1(r, v) = (n, v);

April 27, 2004 ECS 235 Slide #28

Security of Rule
• The give-read rule preserves the simple security condition,

the *-property, and the ds-property
– Proof: Let v satisfy all conditions. Let ρ1(r, v) = (d, v´). If v´ = v,

result is trivial. So let v´ = (b, m[s2, o]←r, f, h). b´ = b, f´ = f, m[x, y]
= m´[x, y] for all x ∈ S and y ∈ O such that x ≠ s and y ≠ o, and m[s,
o] ⊆ m´[s, o]. So, by earlier result, v´ satisfies the simple security
condition, the *-property, and the ds-property.

15

April 27, 2004 ECS 235 Slide #29

Principle of Tranquility
• Raising object’s security level

– Information once available to some subjects is no longer available
– Usually assume information has already been accessed, so this

does nothing
• Lowering object’s security level

– The declassification problem
– Essentially, a “write down” violating *-property
– Solution: define set of trusted subjects that sanitize or remove

sensitive information before security level lowered

April 27, 2004 ECS 235 Slide #30

Types of Tranquility
• Strong Tranquility

– The clearances of subjects, and the classifications of objects, do
not change during the lifetime of the system

• Weak Tranquility
– The clearances of subjects, and the classifications of objects, do

not change in a way that violates the simple security condition or
the *-property during the lifetime of the system

16

April 27, 2004 ECS 235 Slide #31

Example

• DG/UX System
– Only a trusted user (security administrator) can

lower object’s security level
– In general, process MAC labels cannot change

• If a user wants a new MAC label, needs to initiate
new process

• Cumbersome, so user can be designated as able to
change process MAC label within a specified range

April 27, 2004 ECS 235 Slide #32

Controversy

• McLean:
– “value of the BST is much overrated since there

is a great deal more to security than it captures.
Further, what is captured by the BST is so
trivial that it is hard to imagine a realistic
security model for which it does not hold.”

– Basis: given assumptions known to be non-
secure, BST can prove a non-secure system to
be secure

17

April 27, 2004 ECS 235 Slide #33

†-Property
• State (b, m, f, h) satisfies the †-property iff for each s ∈ S

the following hold:
1. b(s: a) ≠ ∅ ⇒ [∀o ∈ b(s: a) [fc(s) dom fo(o)]]
2. b(s: w) ≠ ∅ ⇒ [∀o ∈ b(s: w) [fo(o) = fc(s)]]
3. b(s: r) ≠ ∅ ⇒ [∀o ∈ b(s: r) [fc(s) dom fo(o)]]

• Idea: for writing, subject dominates object; for reading,
subject also dominates object

• Differs from *-property in that the mandatory condition for
writing is reversed
– For *-property, it’s object dominates subject

April 27, 2004 ECS 235 Slide #34

Analogues

The following two theorems can be proved
• Σ(R, D, W, z0) satisfies the †-property relative to S´ ⊆ S

for any secure state z0 iff for every action (r, d, (b, m, f, h),
(b´, m´, f´, h´)), W satisfies the following for every s ∈ S´
– Every (s, o, p) ∈ b – b´ satisfies the †-property relative to S´
– Every (s, o, p) ∈ b´ that does not satisfy the †-property relative to

S´ is not in b
• Σ(R, D, W, z0) is a secure system if z0 is a secure state and

W satisfies the conditions for the simple security condition,
the †-property, and the discretionary security property.

18

April 27, 2004 ECS 235 Slide #35

Problem

• This system is clearly non-secure!
– Information flows from higher to lower because

of the †-property

April 27, 2004 ECS 235 Slide #36

Discussion
• Role of Basic Security Theorem is to demonstrate that

rules preserve security
• Key question: what is security?

– Bell-LaPadula defines it in terms of 3 properties (simple security
condition, *-property, discretionary security property)

– Theorems are assertions about these properties
– Rules describe changes to a particular system instantiating the

model
– Showing system is secure requires proving rules preserve these 3

properties

19

April 27, 2004 ECS 235 Slide #37

Rules and Model
• Nature of rules is irrelevant to model
• Model treats “security” as axiomatic
• Policy defines “security”

– This instantiates the model
– Policy reflects the requirements of the systems

• McLean’s definition differs from Bell-LaPadula
– … and is not suitable for a confidentiality policy

• Analysts cannot prove “security” definition is
appropriate through the model

April 27, 2004 ECS 235 Slide #38

System Z

• System supporting weak tranquility
• On any request, system downgrades all

subjects and objects to lowest level and
adds the requested access permission
– Let initial state satisfy all 3 properties
– Successive states also satisfy all 3 properties

• Clearly not secure
– On first request, everyone can read everything

20

April 27, 2004 ECS 235 Slide #39

Reformulation of Secure Action

• Given state that satisfies the 3 properties,
the action transforms the system into a state
that satisfies these properties and eliminates
any accesses present in the transformed
state that would violate the property in the
initial state, then the action is secure

• BST holds with these modified versions of
the 3 properties

April 27, 2004 ECS 235 Slide #40

Reconsider System Z

• Initial state has subject s, object o, C =
{High, Low}, and K = {All}. Take fc(s) =
(Low, {All}), fo(o) = (High, {All}), m[s,o] =
{ w }, and b = { (s, o, w) }.

• s requests r access to o
• Now fo´(o) = (Low, {All}), (s, o, r) ∈ b´,

and m[s,o] = {r, w}

21

April 27, 2004 ECS 235 Slide #41

Non-Secure System Z

• As (s, o, r) ∈ b´–b and fo(o) dom fc(s),
access added that was illegal in previous
state
– Under the new version of the Basic Security

Theorem, System Z is not secure
– Under the old version of the Basic Security

Theorem, as fc´(s) = fo´ (o), System Z is secure

April 27, 2004 ECS 235 Slide #42

Response: What Is Modeling?

• Two types of models
1. Abstract physical phenomenon to

fundamental properties
2. Begin with axioms and construct a structure

to examine the effects of those axioms
• Bell-LaPadula Model developed as a model

in the first sense
– McLean assumes it was developed as a

model in the second sense

22

April 27, 2004 ECS 235 Slide #43

Reconciling System Z

• Different definitions of security create
different results
– Under one (original definition in Bell-LaPadula

Model), System Z is secure
– Under other (McLean’s definition), System Z is

not secure

April 27, 2004 ECS 235 Slide #44

Key Points

• Confidentiality models restrict flow of
information

• Bell-LaPadula models multilevel security
– Cornerstone of much work in computer security

• Controversy over meaning of security
– Different definitions produce different results

23

April 27, 2004 ECS 235 Slide #45

Overview of Integrity
• Requirements

– Very different than confidentiality policies
• Biba’s models

– Low-Water-Mark policy
– Ring policy
– Strict Integrity policy

• Lipner’s model
– Combines Bell-LaPadula, Biba

• Clark-Wilson model

April 27, 2004 ECS 235 Slide #46

Requirements of Policies
1. Users will not write their own programs, but will use existing production

programs and databases.
2. Programmers will develop and test programs on a nonproduction system; if

they need access to actual data, they will be given production data via a
special process, but will use it on their development system.

3. A special process must be followed to install a program from the
development system onto the production system.

4. The special process in requirement 3 must be controlled and audited.
5. The managers and auditors must have access to both the system state and

the system logs that are generated.

