Vigenère Cipher

- Like Cæsar cipher, but use a phrase
- Example
 - Message THE BOY HAS THE BALL
 - Key VIG
 - Encipher using Cæsar cipher for each letter:

key VIGVIGVIGVIGV plain THEBOYHASTHEBALL cipher OPKWWECIYOPKWIRG

May 11, 2004 ECS 235 Slide #1

Relevant Parts of Tableau

	G	I	V
A	G	I	V
B	H	J	W
E	${f L}$	M	Z
H	N	P	С
L	R	${f T}$	G
0	U	W	J
S	Y	Α	N
T	${f Z}$	В	0
Y	E	H	${f T}$

- Tableau shown has relevant rows, columns only
- Example encipherments:
 - key V, letter T: follow V column down to T row (giving "O")
 - Key I, letter H: follow I column down to H row (giving "P")

Useful Terms

- *period*: length of key
 - In earlier example, period is 3
- *tableau*: table used to encipher and decipher
 - Vigènere cipher has key letters on top, plaintext letters on the left
- *polyalphabetic*: the key has several different letters
 - Cæsar cipher is monoalphabetic

May 11, 2004 ECS 235 Slide #3

Attacking the Cipher

- Approach
 - Establish period; call it *n*
 - Break message into n parts, each part being enciphered using the same key letter
 - Solve each part
 - You can leverage one part from another
- We will show each step

The Target Cipher

• We want to break this cipher:

```
ADQYS MIUSB OXKKT MIBHK IZOOO
EQOOG IFBAG KAUMF VVTAA CIDTW
MOCIO EQOOG BMBFV ZGGWP CIEKQ
HSNEW VECNE DLAAV RWKXS VNSVP
HCEUT QOIOF MEGJS WTPCH AJMOC
HIUIX
```

May 11, 2004 ECS 235 Slide #5

Establish Period

- Kaskski: repetitions in the ciphertext occur when characters of the key appear over the same characters in the plaintext
- Example:

key VIGVIGVIGVIGVIGV plain THEBOYHASTHEBALL cipher OPKWWECIYOPKWIRG

Note the key and plaintext line up over the repetitions (underlined). As distance between repetitions is 9, the period is a factor of 9 (that is, 1, 3, or 9)

Repetitions in Example

Letters	Start	End	Distance	Factors
MI	5	15	10	2, 5
00	22	27	5	5
OEQOOG	24	54	30	2, 3, 5
FV	39	63	24	2, 2, 2, 3
AA	43	87	44	2, 2, 11
MOC	50	122	72	2, 2, 2, 3, 3
QO	56	105	49	7,7
PC	69	117	48	2, 2, 2, 2, 3
NE	77	83	6	2, 3
sv	94	97	3	3
СН	118	124	6	2, 3

May 11, 2004 ECS 235 Slide #7

Estimate of Period

- OEQOOG is probably not a coincidence
 - It's too long for that
 - Period may be 1, 2, 3, 5, 6, 10, 15, or 30
- Most others (8/10) have 2 in their factors
- Almost as many (7/10) have 3 in their factors
- Begin with period of $2 \times 3 = 6$

Check on Period

- Index of coincidence is probability that two randomly chosen letters from ciphertext will be the same
- Tabulated for different periods:
 - 1 0.066 3 0.047 5 0.044 2 0.052 4 0.045 10 0.041 Large 0.038

May 11, 2004 ECS 235 Slide #9

Compute IC

- IC = $[n (n-1)]^{-1} \sum_{0 \le i \le 25} [F_i (F_i 1)]$
 - where n is length of ciphertext and F_i the number of times character i occurs in ciphertext
- Here, IC = 0.043
 - Indicates a key of slightly more than 5
 - A statistical measure, so it can be in error, but it agrees with the previous estimate (which was 6)

Splitting Into Alphabets

- alphabet 1: AIKHOIATTOBGEEERNEOSAI
- alphabet 2: DUKKEFUAWEMGKWDWSUFWJU
- alphabet 3: QSTIQBMAMQBWQVLKVTMTMI
- alphabet 4: YBMZOAFCOOFPHEAXPQEPOX
- alphabet 5: SOIOOGVICOVCSVASHOGCC
- alphabet 6: MXBOGKVDIGZINNVVCIJHH
- ICs (#1, 0.069; #2, 0.078; #3, 0.078; #4, 0.056; #5, 0.124; #6, 0.043) indicate all alphabets have period 1, except #4 and #6; assume statistics off

May 11, 2004 ECS 235 Slide #11

Frequency Examination

ABCDEFGHIJKLMNOPQRSTUVWXYZ

- 1 31004011301001300112000000
- 2 10022210013010000010404000
- 3 12000000201140004013021000
- 4 21102201000010431000000211
- 5 10500021200000500030020000
- 6 01110022311012100000030101

Letter frequencies are (H high, M medium, L low): HMMMHMMHHMMMHHMLHLLLL

Begin Decryption

- First matches characteristics of unshifted alphabet
- Third matches if I shifted to A
- Sixth matches if V shifted to A
- Substitute into ciphertext (bold are substitutions)

```
ADIYS RIUKB OCKKL MIGHKAZOTO EIOOL
IFTAG PAUEF VATAS CIITW EOCNO EIOOL
BMTFV EGGOP CNEKI HSSEW NECSE DDAAA
RWCXS ANSNP HHEUL QONOF EEGOS WLPCM
AJEOC MIUAX
```

May 11, 2004 ECS 235 Slide #13

Look For Clues

• AJE in last line suggests "are", meaning second alphabet maps A into S:

```
ALIYS RICKB OCKSL MIGHS AZOTO
MIOOL INTAG PACEF VATIS CIITE
EOCNO MIOOL BUTFV EGOOP CNESI
HSSEE NECSE LDAAA RECXS ANANP
HHECL QONON EEGOS ELPCM AREOC
MICAX
```

Next Alphabet

• MICAX in last line suggests "mical" (a common ending for an adjective), meaning fourth alphabet maps O into A:

```
ALIMS RICKP OCKSL AIGHS ANOTO MICOL INTOG PACET VATIS QIITE ECCNO MICOL BUTTV EGOOD CNESI VSSEE NSCSE LDOAA RECLS ANAND HHECL EONON ESGOS ELDCM ARECC MICAL
```

May 11, 2004 ECS 235 Slide #15

Got It!

• QI means that U maps into I, as Q is always followed by U:

```
ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS PACET HATIS QUITE ECONO MICAL BUTTH EGOOD ONESI VESEE NSOSE LDOMA RECLE ANAND THECL EANON ESSOS ELDOM ARECO MICAL
```

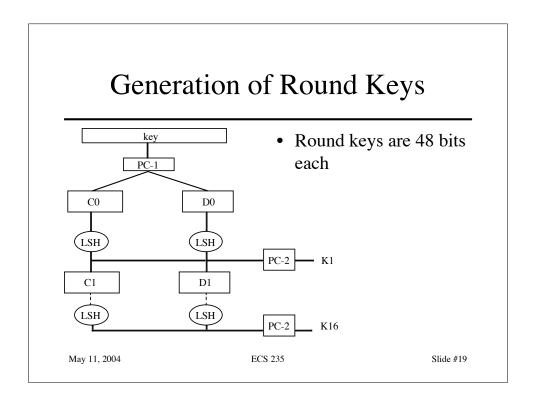
One-Time Pad

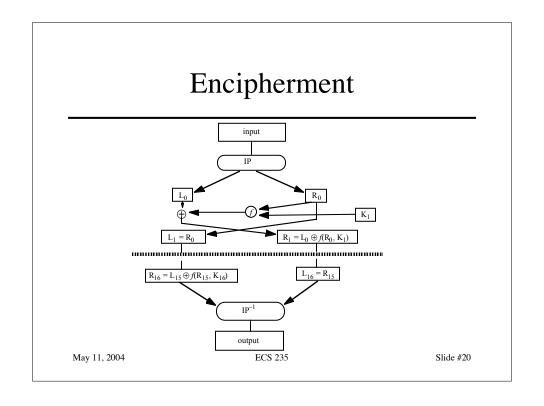
- A Vigenère cipher with a random key at least as long as the message
 - Provably unbreakable
 - Why? Look at ciphertext DXQR. Equally likely to correspond to plaintext DOIT (key AJIY) and to plaintext DONT (key AJDY) and any other 4 letters
 - Warning: keys *must* be random, or you can attack the cipher by trying to regenerate the key
 - Approximations, such as using pseudorandom number generators to generate keys, are not random

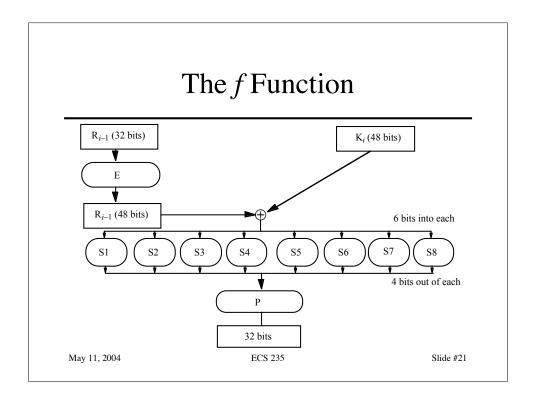
May 11, 2004 ECS 235 Slide #17

Overview of the DES

- A block cipher:
 - encrypts blocks of 64 bits using a 64 bit key
 - outputs 64 bits of ciphertext
 - A product cipher
 - basic unit is the bit
 - performs both substitution and transposition (permutation) on the bits
- Cipher consists of 16 rounds (iterations) each with a round key generated from the user-supplied key







Controversy

- Considered too weak
 - Diffie, Hellman said in a few years technology would allow DES to be broken in days
 - Design using 1999 technology published
 - Design decisions not public
 - S-boxes may have backdoors

Undesirable Properties

- 4 weak keys
 - They are their own inverses
- 12 semi-weak keys
 - Each has another semi-weak key as inverse
- Complementation property
 - $DES_k(m) = c \Rightarrow DES_k(m') = c'$
- S-boxes exhibit irregular properties
 - Distribution of odd, even numbers non-random
 - Outputs of fourth box depends on input to third box

May 11, 2004 ECS 235 Slide #23

Differential Cryptanalysis

- A chosen ciphertext attack
 - Requires 2⁴⁷ plaintext, ciphertext pairs
- Revealed several properties
 - Small changes in S-boxes reduce the number of pairs needed
 - Making every bit of the round keys independent does not impede attack
- Linear cryptanalysis improves result
 - Requires 2⁴³ plaintext, ciphertext pairs

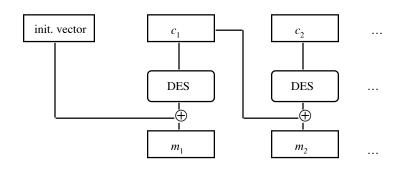
DES Modes

- Electronic Code Book Mode (ECB)
 - Encipher each block independently
- Cipher Block Chaining Mode (CBC)
 - Xor each block with previous ciphertext block
 - Requires an initialization vector for the first one
- Encrypt-Decrypt-Encrypt Mode (2 keys: *k*, *k*)
 - $-c = DES_k(DES_k^{-1}(DES_k(m)))$
- Encrypt-Encrypt Mode (3 keys: k, k', k'') $c = DES_k(DES_k(DES_k(m)))$

May 11, 2004 ECS 235 Slide #25

CBC Mode Encryption init. vector m_1 m_2 ... DES DES ... c_1 sent ECS 235 Slide #26

CBC Mode Decryption



May 11, 2004 ECS 235 Slide #27

Self-Healing Property

- Initial message
- Received as (underlined 4c should be 4b)
 - ef7c4cb2b4ce6f3b f6266e3a97af0e2c
 746ab9a6308f4256 33e60b451b09603d
- Which decrypts to

 - Incorrect bytes underlined; plaintext "heals" after 2 blocks

Current Status of DES

- Design for computer system, associated software that could break any DES-enciphered message in a few days published in 1998
- Several challenges to break DES messages solved using distributed computing
- NIST selected Rijndael as Advanced Encryption Standard, successor to DES
 - Designed to withstand attacks that were successful on DES

May 11, 2004 ECS 235 Slide #29

Public Key Cryptography

- Two keys
 - Private key known only to individual
 - Public key available to anyone
 - Public key, private key inverses
- Idea
 - Confidentiality: encipher using public key, decipher using private key
 - Integrity/authentication: encipher using private key, decipher using public one

Requirements

- 1. It must be computationally easy to encipher or decipher a message given the appropriate key
- 2. It must be computationally infeasible to derive the private key from the public key
- 3. It must be computationally infeasible to determine the private key from a chosen plaintext attack

May 11, 2004 ECS 235 Slide #31

Diffie-Hellman

- Compute a common, shared key
 - Called a *symmetric key exchange protocol*
- Based on discrete logarithm problem
 - Given integers n and g and prime number p, compute k such that $n = g^k \mod p$
 - Solutions known for small *p*
 - Solutions computationally infeasible as p grows large

Algorithm

- Constants: prime p, integer $g \neq 0, 1, p-1$
 - Known to all participants
- Anne chooses private key kAnne, computes public key $KAnne = g^{kAnne} \mod p$
- To communicate with Bob, Anne computes $Kshared = KBob^{kAnne} \mod p$
- To communicate with Anne, Bob computes $Kshared = KAnne^{kBob} \mod p$
 - It can be shown these keys are equal

May 11, 2004 ECS 235 Slide #33

Example

- Assume p = 53 and g = 17
- Alice chooses kAlice = 5
 - Then $KAlice = 17^5 \mod 53 = 40$
- Bob chooses kBob = 7
 - Then $KBob = 17^7 \mod 53 = 6$
- Shared key:
 - $KBob^{kAlice} \bmod p = 6^5 \bmod 53 = 38$
 - $KAlice^{kBob} \bmod p = 40^7 \bmod 53 = 38$

RSA

- Exponentiation cipher
- Relies on the difficulty of determining the number of numbers relatively prime to a large integer *n*

May 11, 2004 ECS 235 Slide #35

Background

- Totient function $\phi(n)$
 - Number of positive integers less than n and relatively prime to n
 - Relatively prime means with no factors in common with n
- Example: $\phi(10) = 4$
 - 1, 3, 7, 9 are relatively prime to 10
- Example: $\phi(21) = 12$
 - 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are relatively prime to 21

Algorithm

- Choose two large prime numbers p, q
 - Let n = pq; then $\phi(n) = (p-1)(q-1)$
 - Choose e < n such that e relatively prime to $\phi(n)$.
 - Compute d such that $ed \mod \phi(n) = 1$
- Public key: (e, n); private key: d
- Encipher: $c = m^e \mod n$
- Decipher: $m = c^d \mod n$

May 11, 2004 ECS 235 Slide #37

Example: Confidentiality

- Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- Alice chooses e = 17, making d = 53
- Bob wants to send Alice secret message HELLO (07 04 11 11 14)
 - $-07^{17} \mod 77 = 28$
 - $-04^{17} \mod 77 = 16$
 - $-11^{17} \mod 77 = 44$
 - $-11^{17} \mod 77 = 44$
 - $-14^{17} \mod 77 = 42$
- Bob sends 28 16 44 44 42

Example

- Alice receives 28 16 44 44 42
- Alice uses private key, d = 53, to decrypt message:
 - $-28^{53} \mod 77 = 07$
 - $-16^{53} \mod 77 = 04$
 - $-44^{53} \mod 77 = 11$
 - $-44^{53} \mod 77 = 11$
 - $-42^{53} \mod 77 = 14$
- Alice translates message to letters to read HELLO
 - No one else could read it, as only Alice knows her private key and that is needed for decryption

May 11, 2004 ECS 235 Slide #39

Example: Integrity/Authentication

- Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- Alice chooses e = 17, making d = 53
- Alice wants to send Bob message HELLO (07 04 11 11 14) so Bob knows it is what Alice sent (no changes in transit, and authenticated)
 - $-07^{53} \mod 77 = 35$
 - $-04^{53} \mod 77 = 09$
 - $-11^{53} \mod 77 = 44$
 - $-11^{53} \mod 77 = 44$
 - $-14^{53} \mod 77 = 49$
- Alice sends 35 09 44 44 49

Example

- Bob receives 35 09 44 44 49
- Bob uses Alice's public key, e = 17, n = 77, to decrypt message:
 - $-35^{17} \mod 77 = 07$
 - $-09^{17} \mod 77 = 04$
 - $-44^{17} \mod 77 = 11$
 - $-44^{17} \mod 77 = 11$
 - $-49^{17} \mod 77 = 14$
- Bob translates message to letters to read HELLO
 - Alice sent it as only she knows her private key, so no one else could have enciphered it
 - If (enciphered) message's blocks (letters) altered in transit, would not decrypt properly

May 11, 2004 ECS 235 Slide #41

Example: Both

- Alice wants to send Bob message HELLO both enciphered and authenticated (integrity-checked)
 - Alice's keys: public (17, 77); private: 53
 - Bob's keys: public: (37, 77); private: 13
- Alice enciphers HELLO (07 04 11 11 14):
 - $(07^{53} \mod 77)^{37} \mod 77 = 07$
 - $(04^{53} \mod 77)^{37} \mod 77 = 37$
 - $(11^{53} \mod 77)^{37} \mod 77 = 44$
 - $(11^{53} \mod 77)^{37} \mod 77 = 44$
 - $(14^{53} \mod 77)^{37} \mod 77 = 14$
- Alice sends 07 37 44 44 14

Security Services

- Confidentiality
 - Only the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key
- Authentication
 - Only the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

May 11, 2004 ECS 235 Slide #43

More Security Services

- Integrity
 - Enciphered letters cannot be changed undetectably without knowing private key
- Non-Repudiation
 - Message enciphered with private key came from someone who knew it

Warnings

- Encipher message in blocks considerably larger than the examples here
 - If 1 character per block, RSA can be broken using statistical attacks (just like classical cryptosystems)
 - Attacker cannot alter letters, but can rearrange them and alter message meaning
 - Example: reverse enciphered message of text ON to get NO

May 11, 2004 ECS 235 Slide #45

Cryptographic Checksums

- Mathematical function to generate a set of k bits from a set of n bits (where $k \le n$).
 - -k is smaller then n except in unusual circumstances
- Example: ASCII parity bit
 - ASCII has 7 bits; 8th bit is "parity"
 - Even parity: even number of 1 bits
 - Odd parity: odd number of 1 bits

Example Use

- Bob receives "10111101" as bits.
 - Sender is using even parity; 6 1 bits, so character was received correctly
 - Note: could be garbled, but 2 bits would need to have been changed to preserve parity
 - Sender is using odd parity; even number of 1 bits, so character was not received correctly

May 11, 2004 ECS 235 Slide #47

Definition

- Cryptographic checksum function $h: A \rightarrow B$:
 - 1. For any $x \in A$, h(x) is easy to compute
 - 2. For any $y \in B$, it is computationally infeasible to find $x \in A$ such that h(x) = y
 - 3. It is computationally infeasible to find two inputs x, $x' \in A$ such that $x \neq x'$ and h(x) = h(x')
 - Alternate form (Stronger): Given any $x \in A$, it is computationally infeasible to find a different $x' \in A$ such that h(x) = h(x').

Collisions

- If $x \neq x$ and h(x) = h(x), x and x are a collision
 - Pigeonhole principle: if there are n containers for n+1 objects, then at least one container will have 2 objects in it.
 - Application: suppose there are 32 elements of A and 8 elements of B, so at least one element of B has at least 4 corresponding elements of A

May 11, 2004 ECS 235 Slide #49

Keys

- Keyed cryptographic checksum: requires cryptographic key
 - DES in chaining mode: encipher message, use last n bits. Requires a key to encipher, so it is a keyed cryptographic checksum.
- Keyless cryptographic checksum: requires no cryptographic key
 - MD5 and SHA-1 are best known; others include MD4, HAVAL, and Snefru

HMAC

- Make keyed cryptographic checksums from keyless cryptographic checksums
- h keyless cryptographic checksum function that takes data in blocks of b bytes and outputs blocks of l bytes. k´is cryptographic key of length b bytes
 - If short, pad with 0 bytes; if long, hash to length b
- *ipad* is 00110110 repeated *b* times
- opad is 01011100 repeated b times
- HMAC- $h(k, m) = h(k' \oplus opad \parallel h(k' \oplus ipad \parallel m))$
 - ⊕ exclusive or, || concatenation