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Overview
• Key exchange

– Session vs. interchange keys
– Classical, public key methods
– Key generation

• Cryptographic key infrastructure
– Certificates

• Key storage
– Key escrow
– Key revocation

• Digital signatures
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Notation
• X → Y : { Z || W } kX,Y

– X sends Y the message produced by concatenating Z and W
enciphered by key kX,Y, which is shared by users X and Y

• A → T : { Z } kA || { W } kA,T
– A sends T a message consisting of the concatenation of Z

enciphered using kA, A’s key, and W enciphered using kA,T, the key
shared by A and T

• r1, r2 nonces (nonrepeating random numbers)
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Session, Interchange Keys

• Alice wants to send a message m to Bob
– Assume public key encryption
– Alice generates a random cryptographic key ks and uses

it to encipher m
• To be used for this message only
• Called a session key

– She enciphers ks with Bob;s public key kB
• kB enciphers all session keys Alice uses to communicate with

Bob
• Called an interchange key

– Alice sends { m } ks { ks } kB
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Benefits

• Limits amount of traffic enciphered with single
key
– Standard practice, to decrease the amount of traffic an

attacker can obtain
• Prevents some attacks

– Example: Alice will send Bob message that is either
“BUY” or “SELL”. Eve computes possible ciphertexts
{ “BUY” } kB and  { “SELL” } kB. Eve intercepts
enciphered message, compares, and gets plaintext at
once
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Key Exchange Algorithms
• Goal: Alice, Bob get shared key

– Key cannot be sent in clear
• Attacker can listen in
• Key can be sent enciphered, or derived from exchanged data plus data

not known to an eavesdropper
– Alice, Bob may trust third party
– All cryptosystems, protocols publicly known

• Only secret data is the keys, ancillary information known only to
Alice and Bob needed to derive keys

• Anything transmitted is assumed known to attacker
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Classical Key Exchange

• Bootstrap problem: how do Alice, Bob
begin?
– Alice can’t send it to Bob in the clear!

• Assume trusted third party, Cathy
– Alice and Cathy share secret key kA

– Bob and Cathy share secret key kB

• Use this to exchange shared key ks
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Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB
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Problems

• How does Bob know he is talking to Alice?
– Replay attack: Eve records message from Alice

to Bob, later replays it; Bob may think he’s
talking to Alice, but he isn’t

– Session key reuse: Eve replays message from
Alice to Bob, so Bob re-uses session key

• Protocols must provide authentication and
defense against replay
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Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks
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Argument: Alice talking to Bob
• Second message

– Enciphered using key only she, Cathy know
• So Cathy enciphered it

– Response to first message
• As r1 in it matches r1 in first message

• Third message
– Alice knows only Bob can read it

• As only Bob can derive session key from message
– Any messages enciphered with that key are from Bob
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Argument: Bob talking to Alice
• Third message

– Enciphered using key only he, Cathy know
• So Cathy enciphered it

– Names Alice, session key
• Cathy provided session key, says Alice is other party

• Fourth message
– Uses session key to determine if it is replay from Eve

• If not, Alice will respond correctly in fifth message
• If so, Eve can’t decipher r2 and so can’t respond, or responds

incorrectly
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Denning-Sacco Modification

• Assumption: all keys are secret
• Question: suppose Eve can obtain session key.

How does that affect protocol?
– In what follows, Eve knows ks

Eve Bob
{ Alice || ks } kB

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks
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Solution

• In protocol above, Eve impersonates Alice
• Problem: replay in third step

– First in previous slide
• Solution: use time stamp T to detect replay
• Weakness: if clocks not synchronized, may either

reject valid messages or accept replays
– Parties with either slow or fast clocks vulnerable to

replay
– Resetting clock does not eliminate vulnerability
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Needham-Schroeder with
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks
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Otway-Rees Protocol

• Corrects problem
– That is, Eve replaying the third message in the

protocol
• Does not use timestamps

– Not vulnerable to the problems that Denning-
Sacco modification has

• Uses integer n to associate all messages
with particular exchange
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The Protocol

Alice Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA

Cathy Bobn || Alice || Bob || { r1 || n || Alice || Bob } kA ||
{ r2 || n || Alice || Bob } kB

Cathy Bobn || { r1 || ks } kA || { r2 || ks } kB

Alice Bob
n || { r1 || ks } kA
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Argument: Alice talking to Bob

• Fourth message
– If n matches first message, Alice knows it is

part of this protocol exchange
– Cathy generated ks because only she, Alice

know kA

– Enciphered part belongs to exchange as r1
matches r1 in encrypted part of first message
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Argument: Bob talking to Alice

• Third message
– If n matches second message, Bob knows it is

part of this protocol exchange
– Cathy generated ks because only she, Bob know

kB

– Enciphered part belongs to exchange as r2
matches r2 in encrypted part of second message
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Replay Attack

• Eve acquires old ks, message in third step
– n || { r1 || ks } kA || { r2 || ks } kB

• Eve forwards appropriate part to Alice
– Alice has no ongoing key exchange with Bob: n

matches nothing, so is rejected
– Alice has ongoing key exchange with Bob: n does not

match, so is again rejected
• If replay is for the current key exchange, and Eve sent the

relevant part before Bob did, Eve could simply listen to traffic;
no replay involved
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Kerberos
• Authentication system

– Based on Needham-Schroeder with Denning-Sacco modification
– Central server plays role of trusted third party (“Cathy”)

• Ticket
– Issuer vouches for identity of requester of service

• Authenticator
– Identifies sender
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Idea
• User u authenticates to Kerberos server

– Obtains ticket Tu,TGS for ticket granting service (TGS)
• User u wants to use service s:

– User sends authenticator Au, ticket Tu,TGS to TGS asking for ticket
for service

– TGS sends ticket Tu,s to user
– User sends Au, Tu,s to server as request to use s

• Details follow
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Ticket
• Credential saying issuer has identified ticket requester
• Example ticket issued to user u for service s

Tu,s = s || { u || u’s address || valid time || ku,s } ks

where:
– ku,s is session key for user and service
– Valid time is interval for which ticket valid
– u’s address may be IP address or something else

• Note: more fields, but not relevant here
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Authenticator

• Credential containing identity of sender of ticket
– Used to confirm sender is entity to which ticket was

issued
• Example: authenticator user u generates for

service s
Au,s = { u || generation time || kt } ku,s

where:
– kt is alternate session key
– Generation time is when authenticator generated

• Note: more fields, not relevant here
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Protocol

user Cathyuser || TGS

Cathy user{ ku,TGS } ku || Tu,TGS

user TGS
service || Au,TGS || Tu,TGS

user TGS
user || { ku,s } ku,TGS || Tu,s

user service
Au,s || Tu,s

user service
{ t + 1 } ku,s



13

May 13, 2004 ECS 235 Slide #25

Analysis

• First two steps get user ticket to use TGS
– User u can obtain session key only if u knows

key shared with Cathy
• Next four steps show how u gets and uses

ticket for service s
– Service s validates request by checking sender

(using Au,s) is same as entity ticket issued to
– Step 6 optional; used when u requests

confirmation
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Problems

• Relies on synchronized clocks
– If not synchronized and old tickets,

authenticators not cached, replay is possible
• Tickets have some fixed fields

– Dictionary attacks possible
– Kerberos 4 session keys weak (had much less

than 56 bits of randomness); researchers at
Purdue found them from tickets in minutes
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Public Key Key Exchange

• Here interchange keys known
– eA, eB Alice and Bob’s public keys known to all
– dA, dB Alice and Bob’s private keys known only to

owner
• Simple protocol

– ks is desired session key

Alice Bob
{ ks } eB
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Problem and Solution

• Vulnerable to forgery or replay
– Because eB known to anyone, Bob has no assurance that

Alice sent message
• Simple fix uses Alice’s private key

– ks is desired session key

Alice Bob
{ { ks } dA } eB



15

May 13, 2004 ECS 235 Slide #29

Notes
• Can include message enciphered with ks

• Assumes Bob has Alice’s public key, and vice versa
– If not, each must get it from public server
– If keys not bound to identity of owner, attacker Eve can launch a

man-in-the-middle attack (next slide; Cathy is public server
providing public keys)

• Solution to this (binding identity to keys) discussed later as public key
infrastructure (PKI)
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Man-in-the-Middle Attack

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message
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Key Generation
• Goal: generate difficult to guess keys
• Problem statement: given a set of K potential keys, choose

one randomly
– Equivalent to selecting a random number between 0 and K–1

inclusive
• Why is this hard: generating random numbers

– Actually, numbers are usually pseudo-random, that is, generated
by an algorithm
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What is “Random”?
• Sequence of cryptographically random numbers: a

sequence of numbers n1, n2, … such that, for any integer
k > 0, an observer cannot predict nk even if all of n1, …,
nk–1 are known
– Best: physical source of randomness

• Random pulses
• Electromagnetic phenomena
• Characteristics of computing environment such as disk latency
• Ambient background noise
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What is “Pseudorandom”?
• Sequence of cryptographically pseudorandom numbers:

sequence of numbers intended to simulate a sequence of
cryptographically random numbers but generated by an
algorithm
– Very difficult to do this well
– Linear congruential generators [nk = (ank–1 + b) mod n] broken
– Polynomial congruential generators [nk = (ajnk–1

j + … + a1nk–1 a0)
mod n] broken too

– Here, “broken” means next number in sequence can be determined
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Best Pseudorandom Numbers

• Strong mixing function: function of 2 or
more inputs with each bit of output
depending on some nonlinear function of all
input bits
– Examples: DES, MD5, SHA-1
– Use on UNIX-based systems:

(date; ps gaux) | md5
where “ps gaux” lists all information about all
processes on system
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Cryptographic Key Infrastructure
• Goal: bind identity to key
• Classical: not possible as all keys are shared

– Use protocols to agree on a shared key (see earlier)
• Public key: bind identity to public key

– Crucial as people will use key to communicate with principal
whose identity is bound to key

– Erroneous binding means no secrecy between principals
– Assume principal identified by an acceptable name
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Certificates

• Create token (message) containing
– Identity of principal (here, Alice)
– Corresponding public key
– Timestamp (when issued)
– Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)
CA = { eA || Alice || T } dC
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Use

• Bob gets Alice’s certificate
– If he knows Cathy’s public key, he can decipher the

certificate
• When was certificate issued?
• Is the principal Alice?

– Now Bob has Alice’s public key
• Problem: Bob needs Cathy’s public key to validate

certificate
– Problem pushed “up” a level
– Two approaches: Merkle’s tree, signature chains
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Merkle’s Tree Scheme
• Keep certificates in a file

– Changing any certificate
changes the file

– Use crypto hash functions to
detect this

• Define hashes recursively
– h is hash function
– Ci is certificate i

• Hash of file (h(1,4) in example)
known to all

h(1,4)

h(1,2)            h(3,4)

h(1,1)  h(2,2)  h(3,3)  h(4,4)

   C1        C2       C3        C4
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Validation
• To validate C1:

– Compute h(1, 1)
– Obtain h(2, 2)
– Compute h(1, 2)
– Obtain h(3, 4)
– Compute h(1,4)
– Compare to known h(1, 4)

• Need to know hashes of
children of nodes on path that
are not computed

h(1,4)

h(1,2)            h(3,4)

h(1,1)  h(2,2)  h(3,3)  h(4,4)

   C1        C2       C3        C4
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Details

• f: D×D→D maps bit strings to bit strings
• h: N×N→D maps integers to bit strings

– if i ≥ j, h(i, j) = f(Ci, Cj)
– if i < j,

h(i, j) = f(h(i, (i+j)/2), h((i+j)/2+1, j))
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Problem

• File must be available for validation
– Otherwise, can’t recompute hash at root of tree
– Intermediate hashes would do

• Not practical in most circumstances
– Too many certificates and users
– Users and certificates distributed over widely

separated systems
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Certificate Signature Chains

• Create certificate
– Generate hash of certificate
– Encipher hash with issuer’s private key

• Validate
– Obtain issuer’s public key
– Decipher enciphered hash
– Recompute hash from certificate and compare

• Problem: getting issuer’s public key
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X.509 Chains
• Some certificate components in X.509v3:

– Version
– Serial number
– Signature algorithm identifier: hash algorithm
– Issuer’s name; uniquely identifies issuer
– Interval of validity
– Subject’s name; uniquely identifies subject
– Subject’s public key
– Signature: enciphered hash
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X.509 Certificate Validation
• Obtain issuer’s public key

– The one for the particular signature algorithm
• Decipher signature

– Gives hash of certificate
• Recompute hash from certificate and compare

– If they differ, there’s a problem
• Check interval of validity

– This confirms that certificate is current
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Issuers

• Certification Authority (CA): entity that
issues certificates
– Multiple issuers pose validation problem
– Alice’s CA is Cathy; Bob’s CA is Don; how

can Alice validate Bob’s certificate?
– Have Cathy and Don cross-certify

• Each issues certificate for the other
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Validation and Cross-Certifying

• Certificates:
– Cathy<<Alice>>
– Dan<<Bob>
– Cathy<<Dan>>
– Dan<<Cathy>>

• Alice validates Bob’s certificate
– Alice obtains Cathy<<Dan>>
– Alice uses (known) public key of Cathy to validate

Cathy<<Dan>>
– Alice uses Cathy<<Dan>> to validate Dan<<Bob>>
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PGP Chains

• OpenPGP certificates structured into packets
– One public key packet
– Zero or more signature packets

• Public key packet:
– Version (3 or 4; 3 compatible with all versions of PGP,

4 not compatible with older versions of PGP)
– Creation time
– Validity period (not present in version 3)
– Public key algorithm, associated parameters
– Public key
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OpenPGP Signature Packet
• Version 3 signature packet

– Version (3)
– Signature type (level of trust)
– Creation time (when next fields hashed)
– Signer’s key identifier (identifies key to encipher hash)
– Public key algorithm (used to encipher hash)
– Hash algorithm
– Part of signed hash (used for quick check)
– Signature (enciphered hash)

• Version 4 packet more complex
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Signing
• Single certificate may have multiple signatures
• Notion of “trust” embedded in each signature

– Range from “untrusted” to “ultimate trust”
– Signer defines meaning of trust level (no standards!)

• All version 4 keys signed by subject
– Called “self-signing”
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Validating Certificates
• Alice needs to validate

Bob’s OpenPGP cert
– Does not know Fred,

Giselle, or Ellen
• Alice gets Giselle’s cert

– Knows Henry slightly, but
his signature is at “casual”
level of trust

• Alice gets Ellen’s cert
– Knows Jack, so uses his

cert to validate Ellen’s, then
hers to validate Bob’s Bob

Fred

Giselle

Ellen
Irene

Henry

Jack

Arrows show signatures
Self signatures not shown
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Storing Keys
• Multi-user or networked systems: attackers may defeat

access control mechanisms
– Encipher file containing key

• Attacker can monitor keystrokes to decipher files
• Key will be resident in memory that attacker may be able to read

– Use physical devices like “smart card”
• Key never enters system
• Card can be stolen, so have 2 devices combine bits to make single key
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Key Escrow

• Key escrow system allows authorized third party to
recover key
– Useful when keys belong to roles, such as system

operator, rather than individuals
– Business: recovery of backup keys
– Law enforcement: recovery of keys that authorized

parties require access to
• Goal: provide this without weakening

cryptosystem
• Very controversial
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Desirable Properties
• Escrow system should not depend on encipherment

algorithm
• Privacy protection mechanisms must work from end to end

and be part of user interface
• Requirements must map to key exchange protocol
• System supporting key escrow must require all parties to

authenticate themselves
• If message to be observable for limited time, key escrow

system must ensure keys valid for that period of time only
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Components

• User security component
– Does the encipherment, decipherment
– Supports the key escrow component

• Key escrow component
– Manages storage, use of data recovery keys

• Data recovery component
– Does key recovery
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Example: EES, Clipper Chip
• Escrow Encryption Standard

– Set of interlocking components
– Designed to balance need for law enforcement access to

enciphered traffic with citizens’ right to privacy
• Clipper chip prepares per-message escrow information

– Each chip numbered uniquely by UID
– Special facility programs chip

• Key Escrow Decrypt Processor (KEDP)
– Available to agencies authorized to read messages
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User Security Component

• Unique device key kunique
• Nonunique family key kfamily
• Cipher is Skipjack

– Classical cipher: 80 bit key, 64 bit input, output blocks
• Generates Law Enforcement Access Field (LEAF)

of 128 bits:
– { UID || { ksession } kunique || hash } kfamily
– hash: 16 bit authenticator from session key and

initialization vector


