Overview

Key exchange
— Session vs. interchange keys
— Classical, public key methods
— Key generation
Cryptographic key infrastructure
— Certificates
Key storage
— Key escrow
— Key revocation
Digital signatures

May 13, 2004 ECS 235 Slide #1

Notation

« X= Y {ZIW}key

— X sends Y the message produced by concatenating Z and W
enciphered by key ky y, which is shared by users X and ¥

c AT {ZYky I { W}k,

— A sends T a message consisting of the concatenation of Z
enciphered using k,, A’s key, and W enciphered using k, 1, the key
shared by A and T

* r,, I, nonces (nonrepeating random numbers)

May 13, 2004 ECS 235 Slide #2

Session, Interchange Keys

* Alice wants to send a message m to Bob
— Assume public key encryption
— Alice generates a random cryptographic key k, and uses
it to encipher m
* To be used for this message only
 Called a session key
— She enciphers k, with Bob;s public key kg

* kg enciphers all session keys Alice uses to communicate with
Bob

e Called an interchange key

— Alicesends { m } k, { k, } kg

May 13, 2004 ECS 235 Slide #3

Benefits

* Limits amount of traffic enciphered with single
key
— Standard practice, to decrease the amount of traffic an
attacker can obtain
e Prevents some attacks

— Example: Alice will send Bob message that is either
“BUY” or “SELL”. Eve computes possible ciphertexts
{“BUY” } kyand { “SELL” } k. Eve intercepts
enciphered message, compares, and gets plaintext at
once

May 13, 2004 ECS 235 Slide #4

Key Exchange Algorithms

* Goal: Alice, Bob get shared key

— Key cannot be sent in clear
* Attacker can listen in

» Key can be sent enciphered, or derived from exchanged data plus data
not known to an eavesdropper

— Alice, Bob may trust third party
— All cryptosystems, protocols publicly known

* Only secret data is the keys, ancillary information known only to
Alice and Bob needed to derive keys

* Anything transmitted is assumed known to attacker

May 13, 2004 ECS 235 Slide #5

Classical Key Exchange

e Bootstrap problem: how do Alice, Bob
begin?
— Alice can’t send it to Bob in the clear!
e Assume trusted third party, Cathy
— Alice and Cathy share secret key k,
— Bob and Cathy share secret key kg

» Use this to exchange shared key k

May 13, 2004 ECS 235 Slide #6

Simple Protocol

{ request for session key to Bob } k,

Alice » Cathy
k Yk, N{k Yk
Alice < LA 3R TR) K Cathy
kY k
Alice Uk 3 » Bob
May 13, 2004 ECS 235 Slide #7
Problems

* How does Bob know he is talking to Alice?

— Replay attack: Eve records message from Alice
to Bob, later replays it; Bob may think he’s
talking to Alice, but he isn’t

— Session key reuse: Eve replays message from
Alice to Bob, so Bob re-uses session key

* Protocols must provide authentication and
defense against replay

May 13, 2004 ECS 235 Slide #8

Needham-Schroeder

Alice Il Bob Il r,

Alice

v

Cathy

{ Alice [l Bob Il r Il k Il { Alice Il k, } ky } k,
Alice < Cathy

{ Alice 1 k, } kg

Alice » Bob
{r, }k
Alice < Bob
{r,— 1}k
Alice » Bob
May 13, 2004 ECS 235 Slide #9

Argument: Alice talking to Bob

* Second message
— Enciphered using key only she, Cathy know
* So Cathy enciphered it
— Response to first message
* As ry in it matches r, in first message
e Third message
— Alice knows only Bob can read it
* As only Bob can derive session key from message

— Any messages enciphered with that key are from Bob

May 13, 2004 ECS 235 Slide #10

Argument: Bob talking to Alice

e Third message
— Enciphered using key only he, Cathy know
* So Cathy enciphered it

— Names Alice, session key
* Cathy provided session key, says Alice is other party

* Fourth message
— Uses session key to determine if it is replay from Eve
* If not, Alice will respond correctly in fifth message
* If so, Eve can’t decipher r, and so can’t respond, or responds

incorrectly

May 13, 2004 ECS 235 Slide #11

Denning-Sacco Modification

* Assumption: all keys are secret
* Question: suppose Eve can obtain session key.
How does that affect protocol?

— In what follows, Eve knows k
{ Alice ll k, } kg

Eve » Bob
{r ks
Eve <« Bob
{r,—1}k,
Eve » Bob
ECS 235 Slide #12

May 13, 2004

Solution

In protocol above, Eve impersonates Alice
Problem: replay in third step

— First in previous slide

Solution: use time stamp 7 to detect replay
Weakness: if clocks not synchronized, may either
reject valid messages or accept replays

— Parties with either slow or fast clocks vulnerable to
replay
— Resetting clock does not eliminate vulnerability

May 13, 2004 ECS 235 Slide #13

Needham-Schroeder with
Denning-Sacco Modification

) Alice Il Bob Il r,
Alice » Cathy
{ Alice I Bob Il r{ Tk Il { Alice I T'Il k, } kg } k,

Alice < Cathy
{Alice | Tl k, } kg

Alice » Bob

{r,}k

Alice < Bob
{r,— 1}k

Alice » Bob

May 13, 2004 ECS 235 Slide #14

Otway-Rees Protocol

e Corrects problem

— That is, Eve replaying the third message in the
protocol

* Does not use timestamps

— Not vulnerable to the problems that Denning-
Sacco modification has

e Uses integer n to associate all messages
with particular exchange

May 13, 2004 ECS 235 Slide #15

The Protocol

nll Alice [l Bob Il { ; Il n Il Alice Il Bob } k,

Alice » Bob
“nl Alice Il Bob Il { r, Il n 1l Alice Il Bob } &, I
Cathy 0 T 1T Alice 1 Bob § &, Bob
Cathy nl L Uk 3 k{1 ey . Bob
nll{r Wk }k,
Alice <« Bob

May 13, 2004 ECS 235 Slide #16

Argument: Alice talking to Bob

e Fourth message

— If n matches first message, Alice knows it is
part of this protocol exchange

— Cathy generated k, because only she, Alice
know k,

— Enciphered part belongs to exchange as r,;
matches r, in encrypted part of first message

May 13, 2004 ECS 235 Slide #17

Argument: Bob talking to Alice

e Third message

— If n matches second message, Bob knows it is
part of this protocol exchange

— Cathy generated k, because only she, Bob know
kp

— Enciphered part belongs to exchange as r,
matches r, in encrypted part of second message

May 13, 2004 ECS 235 Slide #18

Replay Attack

» Eve acquires old k,, message in third step
ol {r Nk Yk I {ry Ik, } Ky
* Eve forwards appropriate part to Alice

— Alice has no ongoing key exchange with Bob: n
matches nothing, so is rejected

— Alice has ongoing key exchange with Bob: n does not
match, so is again rejected

* If replay is for the current key exchange, and Eve sent the
relevant part before Bob did, Eve could simply listen to traffic;
no replay involved

May 13, 2004 ECS 235 Slide #19

Kerberos

* Authentication system
— Based on Needham-Schroeder with Denning-Sacco modification
— Central server plays role of trusted third party (“Cathy’)

¢ Ticket

— Issuer vouches for identity of requester of service

¢ Authenticator
— Identifies sender

May 13, 2004 ECS 235 Slide #20

10

Idea

¢ User u authenticates to Kerberos server
— Obtains ticket T, 7, for ticket granting service (TGS)
e User u wants to use service s:

— User sends authenticator A, ticket T, ;5 to TGS asking for ticket
for service

— TGS sends ticket T, ; to user
— Usersends A,, T, , to server as request to use s

¢ Details follow

May 13, 2004 ECS 235 Slide #21

Ticket

* Credential saying issuer has identified ticket requester

* Example ticket issued to user u for service s
T,,=sl{ullu’s address Il valid time Il k, ; } k,
where:
— k,, is session key for user and service
— Valid time is interval for which ticket valid
— u’s address may be IP address or something else

¢ Note: more fields, but not relevant here

May 13, 2004 ECS 235 Slide #22

11

Authenticator

* Credential containing identity of sender of ticket

— Used to confirm sender is entity to which ticket was
issued

* Example: authenticator user u generates for
service s
A, ;= { ull generation time Il k, } k,
where:
— k, is alternate session key

— Generation time is when authenticator generated
¢ Note: more fields, not relevant here

May 13, 2004 ECS 235 Slide #23
Protocol

user user | TGS + Cathy
k kIIT

Cathy < { u,TGS} u u,1GS user

service | A, 7651 T, 765
user » TGS
user W{ k, } k, 7651 T,

user TGS
Au,s ” Tu S .
user > service
{t+1}k,,
user < service
May 13, 2004 ECS 235 Slide #24

12

Analysis

* First two steps get user ticket to use TGS

— User u can obtain session key only if # knows
key shared with Cathy

* Next four steps show how u gets and uses
ticket for service s

— Service s validates request by checking sender
(using A,) is same as entity ticket issued to

— Step 6 optional; used when u requests
confirmation

May 13, 2004 ECS 235 Slide #25

Problems

e Relies on synchronized clocks

— If not synchronized and old tickets,
authenticators not cached, replay is possible

¢ Tickets have some fixed fields
— Dictionary attacks possible

— Kerberos 4 session keys weak (had much less
than 56 bits of randomness); researchers at
Purdue found them from tickets in minutes

May 13, 2004 ECS 235 Slide #26

13

Public Key Key Exchange

* Here interchange keys known
— e,, eg Alice and Bob’s public keys known to all

— d,, dgz Alice and Bob’s private keys known only to
owner

e Simple protocol

— k, is desired session key

k. }e
Alice ki3 ep » Bob

May 13, 2004 ECS 235 Slide #27

Problem and Solution

* Vulnerable to forgery or replay

— Because ez known to anyone, Bob has no assurance that
Alice sent message

» Simple fix uses Alice’s private key

— k, is desired session key

k.}Yd
Alice Lk dayes » Bob

May 13, 2004 ECS 235 Slide #28

14

Notes

* Can include message enciphered with &

* Assumes Bob has Alice’s public key, and vice versa
— If not, each must get it from public server

— If keys not bound to identity of owner, attacker Eve can launch a
man-in-the-middle attack (next slide; Cathy is public server
providing public keys)

* Solution to this (binding identity to keys) discussed later as public key
infrastructure (PKI)

May 13, 2004 ECS 235 Slide #29

Man-in-the-Middle Attack

send Bob’s public key \ Eve intercepts request
\

Alice » Cathy
Eve send Bob’s public key= Cathy
€p
Eve < Cathy
¢g
Alice < Eve
{k,} e ;
Alice E Eve intercepts message Bob
Lk 3 eg
Eve » Bob
May 13, 2004 ECS 235 Slide #30

15

Key Generation

* Goal: generate difficult to guess keys
* Problem statement: given a set of K potential keys, choose
one randomly

— Equivalent to selecting a random number between 0 and K-1
inclusive

* Why is this hard: generating random numbers

— Actually, numbers are usually pseudo-random, that is, generated
by an algorithm

May 13, 2004 ECS 235 Slide #31

What 1s “Random”?

* Sequence of cryptographically random numbers: a
sequence of numbers 7, n,, ... such that, for any integer
k >0, an observer cannot predict n, even if all of nn, ...,
n,_, are known
— Best: physical source of randomness

* Random pulses

* Electromagnetic phenomena

* Characteristics of computing environment such as disk latency

* Ambient background noise

May 13, 2004 ECS 235 Slide #32

16

What is “Pseudorandom”?

» Sequence of cryptographically pseudorandom numbers:
sequence of numbers intended to simulate a sequence of
cryptographically random numbers but generated by an
algorithm

— Very difficult to do this well

— Linear congruential generators [n, = (an,_, + b) mod n] broken

— Polynomial congruential generators [n, = (apn_/ + ... + a;m_; a)
mod 7] broken too

Here, “broken” means next number in sequence can be determined

May 13, 2004 ECS 235 Slide #33

Best Pseudorandom Numbers

» Strong mixing function: function of 2 or
more inputs with each bit of output
depending on some nonlinear function of all
input bits

— Examples: DES, MD35, SHA-1
— Use on UNIX-based systems:
(date; ps gaux) | md5
where “ps gaux” lists all information about all
processes on system

May 13, 2004 ECS 235 Slide #34

17

Cryptographic Key Infrastructure

* Goal: bind identity to key

* C(lassical: not possible as all keys are shared
— Use protocols to agree on a shared key (see earlier)

* Public key: bind identity to public key

— Crucial as people will use key to communicate with principal
whose identity is bound to key

— Erroneous binding means no secrecy between principals
— Assume principal identified by an acceptable name

May 13, 2004 ECS 235 Slide #35

Certificates

* Create token (message) containing
— Identity of principal (here, Alice)
— Corresponding public key
— Timestamp (when issued)
— Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)
C,={e,llAlice I T } d,

May 13, 2004 ECS 235 Slide #36

18

Use

* Bob gets Alice’s certificate

— If he knows Cathy’s public key, he can decipher the
certificate
* When was certificate issued?
* Is the principal Alice?

— Now Bob has Alice’s public key
* Problem: Bob needs Cathy’s public key to validate
certificate
— Problem pushed “up” a level
— Two approaches: Merkle’s tree, signature chains

May 13, 2004 ECS 235 Slide #37

Merkle’s Tree Scheme

* Keep certificates in a file

— Changing any certificate h(1,4)
changes the file / \\

— Use crypto hash functions to h(1,2) h(3,4)
detect this ’ ’

* Define hashes recursively / \ / \

— his hash function

_ s certificate i h(1,1) m2.2) h(3,3) h(4.4)
* Hash of file (4(1,4) in example) ‘ ‘ ‘ ‘

known to all C1 C2 C3 C4

May 13, 2004 ECS 235 Slide #38

19

Validation

e To validate C,:
— Compute A(1, 1)
— Obtain h(2, 2)
h(3,4) — Compute A(1, 2)

— Obtain h(3, 4)
— Compute A(1,4)
h(3,3) h(4,4) — Compare to known h(1, 4)
‘ ‘ ¢ Need to know hashes of

‘ children of nodes on path that
C3 C4 are not computed

May 13, 2004 ECS 235 Slide #39

Details

* f DxD—D maps bit strings to bit strings
e h: NxN—D maps integers to bit strings
—ifizj, h(i, j) =fC; C)
—ifi<},
h(, j) = fihG, [G+)/2]), h([@+))/2]+1,)

May 13, 2004 ECS 235 Slide #40

20

Problem

» File must be available for validation
— Otherwise, can’t recompute hash at root of tree
— Intermediate hashes would do

* Not practical in most circumstances
— Too many certificates and users

— Users and certificates distributed over widely
separated systems

May 13, 2004 ECS 235 Slide #41

Certificate Signature Chains

* Create certificate
— Generate hash of certificate
— Encipher hash with issuer’s private key
e Validate
— Obtain issuer’s public key
— Decipher enciphered hash
— Recompute hash from certificate and compare

* Problem: getting issuer’s public key

May 13, 2004 ECS 235 Slide #42

21

X.509 Chains

* Some certificate components in X.509v3:

May 13,

Version

Serial number

Signature algorithm identifier: hash algorithm
Issuer’s name; uniquely identifies issuer
Interval of validity

Subject’s name; uniquely identifies subject
Subject’s public key

Signature: enciphered hash

2004 ECS 235 Slide #43

X.509 Certificate Validation

e Obtain issuer’s public key

The one for the particular signature algorithm

* Decipher signature

Gives hash of certificate

* Recompute hash from certificate and compare

If they differ, there’s a problem

* Check interval of validity

May 13,

This confirms that certificate is current

2004 ECS 235 Slide #44

22

Issuers

o Certification Authority (CA): entity that
issues certificates
— Multiple issuers pose validation problem

— Alice’s CA is Cathy; Bob’s CA is Don; how
can Alice validate Bob’s certificate?

— Have Cathy and Don cross-certify
¢ Each issues certificate for the other

May 13, 2004 ECS 235 Slide #45

Validation and Cross-Certifying

» Certificates:
— Cathy<<Alice>>
— Dan<<Bob>
— Cathy<<Dan>>
— Dan<<Cathy>>

¢ Alice validates Bob’s certificate

— Alice obtains Cathy<<Dan>>

— Alice uses (known) public key of Cathy to validate
Cathy<<Dan>>

— Alice uses Cathy<<Dan>> to validate Dan<<Bob>>

May 13, 2004 ECS 235 Slide #46

23

PGP Chains

* OpenPGP certificates structured into packets
— One public key packet
— Zero or more signature packets

* Public key packet:

— Version (3 or 4; 3 compatible with all versions of PGP,
4 not compatible with older versions of PGP)

— Creation time

— Validity period (not present in version 3)

— Public key algorithm, associated parameters
— Public key

May 13, 2004 ECS 235 Slide #47

OpenPGP Signature Packet

* Version 3 signature packet
— Version (3)
— Signature type (level of trust)
— Creation time (when next fields hashed)
— Signer’s key identifier (identifies key to encipher hash)
— Public key algorithm (used to encipher hash)
— Hash algorithm
— Part of signed hash (used for quick check)
— Signature (enciphered hash)

* Version 4 packet more complex

May 13, 2004 ECS 235 Slide #48

24

Signing

* Single certificate may have multiple signatures
* Notion of “trust” embedded in each signature

— Range from “untrusted” to “ultimate trust”

— Signer defines meaning of trust level (no standards!)
* All version 4 keys signed by subject

— Called “self-signing”

May 13, 2004 ECS 235 Slide #49

Validating Certificates

* Alice needs to validate Arrows show signatures
Bob’s OpenPGP cert Self signatures not shown

— Does not know Fred,
Giselle, or Ellen

* Alice gets Giselle’s cert o
— Knows Henry slightly, but ‘
.

his signature is at “casual”
/ Fred

level of trust
May 13, 2004 ECS 235 Slide #50

* Alice gets Ellen’s cert

— Knows Jack, so uses his
cert to validate Ellen’s, then
hers to validate Bob’s

25

Storing Keys

e Multi-user or networked systems: attackers may defeat
access control mechanisms
— Encipher file containing key
 Attacker can monitor keystrokes to decipher files
» Key will be resident in memory that attacker may be able to read
— Use physical devices like “smart card”
* Key never enters system
* Card can be stolen, so have 2 devices combine bits to make single key

May 13, 2004 ECS 235 Slide #51

Key Escrow

* Key escrow system allows authorized third party to
recover key

— Useful when keys belong to roles, such as system
operator, rather than individuals

— Business: recovery of backup keys

— Law enforcement: recovery of keys that authorized
parties require access to

* Goal: provide this without weakening
cryptosystem

* Very controversial

May 13, 2004 ECS 235 Slide #52

26

Desirable Properties

* Escrow system should not depend on encipherment
algorithm

e Privacy protection mechanisms must work from end to end
and be part of user interface

e Requirements must map to key exchange protocol

* System supporting key escrow must require all parties to
authenticate themselves

» If message to be observable for limited time, key escrow
system must ensure keys valid for that period of time only

May 13, 2004 ECS 235 Slide #53

Components

e User security component

— Does the encipherment, decipherment

— Supports the key escrow component
* Key escrow component

— Manages storage, use of data recovery keys
* Data recovery component

— Does key recovery

May 13, 2004 ECS 235 Slide #54

27

Example: EES, Clipper Chip

e Escrow Encryption Standard
— Set of interlocking components

— Designed to balance need for law enforcement access to
enciphered traffic with citizens’ right to privacy

* Clipper chip prepares per-message escrow information
— Each chip numbered uniquely by UID
— Special facility programs chip

* Key Escrow Decrypt Processor (KEDP)

— Available to agencies authorized to read messages

May 13, 2004 ECS 235 Slide #55

User Security Component

* Unique device key &,
* Nonunique family key k.,
* Cipher is Skipjack
— Classical cipher: 80 bit key, 64 bit input, output blocks
e Generates Law Enforcement Access Field (LEAF)
of 128 bits:
= { UID 1 kyogsion I Kunigue 1 haSh } Ky,

— hash: 16 bit authenticator from session key and
initialization vector

May 13, 2004 ECS 235 Slide #56

28

