
1

May 20, 2004 ECS 235 Slide #1

Proactive Password Checking
• Analyze proposed password for “goodness”

– Always invoked
– Can detect, reject bad passwords for an appropriate

definition of “bad”
– Discriminate on per-user, per-site basis
– Needs to do pattern matching on words
– Needs to execute subprograms and use results

• Spell checker, for example
– Easy to set up and integrate into password selection

system

May 20, 2004 ECS 235 Slide #2

Example: OPUS

• Goal: check passwords against large dictionaries
quickly
– Run each word of dictionary through k different hash

functions h1, …, hk producing values less than n
– Set bits h1, …, hk in OPUS dictionary
– To check new proposed word, generate bit vector and

see if all corresponding bits set
• If so, word is in one of the dictionaries to some degree of

probability
• If not, it is not in the dictionaries

2

May 20, 2004 ECS 235 Slide #3

Example: passwd+

• Provides little language to describe proactive
checking
– test length(“$p”) < 6

• If password under 6 characters, reject it
– test infile(“/usr/dict/words”, “$p”)

• If password in file /usr/dict/words, reject it
– test !inprog(“spell”, “$p”, “$p”)

• If password not in the output from program spell, given the
password as input, reject it (because it’s a properly spelled
word)

May 20, 2004 ECS 235 Slide #4

Salting

• Goal: slow dictionary attacks
• Method: perturb hash function so that:

– Parameter controls which hash function is used
– Parameter differs for each password
– So given n password hashes, and therefore n

salts, need to hash guess n

3

May 20, 2004 ECS 235 Slide #5

Examples

• Vanilla UNIX method
– Use DES to encipher 0 message with password

as key; iterate 25 times
– Perturb E table in DES in one of 4096 ways

• 12 bit salt flips entries 1–11 with entries 25–36

• Alternate methods
– Use salt as first part of input to hash function

May 20, 2004 ECS 235 Slide #6

Guessing Through L

• Cannot prevent these
– Otherwise, legitimate users cannot log in

• Make them slow
– Backoff
– Disconnection
– Disabling

• Be very careful with administrative accounts!
– Jailing

• Allow in, but restrict activities

4

May 20, 2004 ECS 235 Slide #7

Password Aging

• Force users to change passwords after some
time has expired
– How do you force users not to re-use

passwords?
• Record previous passwords
• Block changes for a period of time

– Give users time to think of good passwords
• Don’t force them to change before they can log in
• Warn them of expiration days in advance

May 20, 2004 ECS 235 Slide #8

Challenge-Response

• User, system share a secret function f (in practice, f is a
known function with unknown parameters, such as a
cryptographic key)

user systemrequest to authenticate

user systemrandom message r
(the challenge)

user systemf(r)
(the response)

5

May 20, 2004 ECS 235 Slide #9

Pass Algorithms
• Challenge-response with the function f itself a

secret
– Example:

• Challenge is a random string of characters such as “abcdefg”,
“ageksido”

• Response is some function of that string such as “bdf”, “gkip”
– Can alter algorithm based on ancillary information

• Network connection is as above, dial-up might require “aceg”,
“aesd”

– Usually used in conjunction with fixed, reusable
password

May 20, 2004 ECS 235 Slide #10

One-Time Passwords

• Password that can be used exactly once
– After use, it is immediately invalidated

• Challenge-response mechanism
– Challenge is number of authentications; response is

password for that particular number
• Problems

– Synchronization of user, system
– Generation of good random passwords
– Password distribution problem

6

May 20, 2004 ECS 235 Slide #11

S/Key
• One-time password scheme based on idea of

Lamport
• h one-way hash function (MD5 or SHA-1, for

example)
• User chooses initial seed k
• System calculates:

h(k) = k1, h(k1) = k2, …, h(kn–1) = kn

• Passwords are reverse order:
p1 = kn, p2 = kn–1, …, pn–1 = k2, pn = k1

May 20, 2004 ECS 235 Slide #12

S/Key Protocol

user system{ name }

user system{ i }

user system{ pi }

System stores maximum number of authentications n, number
of next authentication i, last correctly supplied password pi–1.

System computes h(pi) = h(kn–i+1) = kn–i = pi–1. If match with
what is stored, system replaces pi–1 with pi and increments i.

7

May 20, 2004 ECS 235 Slide #13

Hardware Support

• Token-based
– Used to compute response to challenge

• May encipher or hash challenge
• May require PIN from user

• Temporally-based
– Every minute (or so) different number shown

• Computer knows what number to expect when
– User enters number and fixed password

May 20, 2004 ECS 235 Slide #14

C-R and Dictionary Attacks

• Same as for fixed passwords
– Attacker knows challenge r and response f(r); if

f encryption function, can try different keys
• May only need to know form of response; attacker

can tell if guess correct by looking to see if
deciphered object is of right form

• Example: Kerberos Version 4 used DES, but keys
had 20 bits of randomness; Purdue attackers guessed
keys quickly because deciphered tickets had a fixed
set of bits in some locations

8

May 20, 2004 ECS 235 Slide #15

Encrypted Key Exchange

• Defeats off-line dictionary attacks
• Idea: random challenges enciphered, so attacker

cannot verify correct decipherment of challenge
• Assume Alice, Bob share secret password s
• In what follows, Alice needs to generate a random

public key p and a corresponding private key q
• Also, k is a randomly generated session key, and

RA and RB are random challenges

May 20, 2004 ECS 235 Slide #16

EKE Protocol

Alice Bob{ Alice || Es(p) }

Alice Bob{Es(Ep(k)) }

Now Alice, Bob share a randomly generated
secret session key k

Alice Bob{ Ek(RA) }

Alice Bob{Ek(RARB) }

Alice Bob{ Ek(RB) }

9

May 20, 2004 ECS 235 Slide #17

Biometrics
• Automated measurement of biological, behavioral

features that identify a person
– Fingerprints, voices, eyes, faces
– Keystrokes, timing intervals between commands
– Combinations

• Cautions: can be fooled!
– Assumes biometric device accurate in the environment

it is being used in!
– Transmission of data to validator is tamperproof,

correct

May 20, 2004 ECS 235 Slide #18

Location

• If you know where user is, validate identity
by seeing if person is where the user is
– Requires special-purpose hardware to locate

user
• GPS (global positioning system) device gives

location signature of entity
• Host uses LSS (location signature sensor) to get

signature for entity

10

May 20, 2004 ECS 235 Slide #19

Multiple Methods

• Example: “where you are” also requires entity to
have LSS and GPS, so also “what you have”

• Can assign different methods to different tasks
– As users perform more and more sensitive tasks, must

authenticate in more and more ways (presumably, more
stringently) File describes authentication required

• Also includes controls on access (time of day, etc.), resources,
and requests to change passwords

– Pluggable Authentication Modules

May 20, 2004 ECS 235 Slide #20

PAM
• Idea: when program needs to authenticate, it

checks central repository for methods to use
• Library call: pam_authenticate

– Accesses file with name of program in /etc/pam_d
• Modules do authentication checking

– sufficient: succeed if module succeeds
– required: fail if module fails, but all required modules

executed before reporting failure
– requisite: like required, but don’t check all modules
– optional: invoke only if all previous modules fail

11

May 20, 2004 ECS 235 Slide #21

Example PAM File
auth sufficient /usr/lib/pam_ftp.so
auth required /usr/lib/pam_unix_auth.so use_first_pass
auth required /usr/lib/pam_listfile.so onerr=succeed \

item=user sense=deny file=/etc/ftpusers

For ftp:
1. If user “anonymous”, return okay; if not, set

PAM_AUTHTOK to password, PAM_RUSER to name,
and fail

2. Now check that password in PAM_AUTHTOK belongs
to that of user in PAM_RUSER; if not, fail

3. Now see if user in PAM_RUSER named in /etc/ftpusers;
if so, fail; if error or not found, succeed

May 20, 2004 ECS 235 Slide #22

Key Points

• Authentication is not cryptography
– You have to consider system components

• Passwords are here to stay
– They provide a basis for most forms of authentication

• Protocols are important
– They can make masquerading harder

• Authentication methods can be combined
– Example: PAM

12

May 20, 2004 ECS 235 Slide #23

Overview

• Access control lists
• Capability lists
• Locks and keys
• Rings-based access control
• Propagates access control lists

May 20, 2004 ECS 235 Slide #24

Access Control Lists
• Columns of access control matrix
 file1 file2 file3
Andy rx r rwo
Betty rwxo r
Charlie rx rwo w
ACLs:
• file1: { (Andy, rx) (Betty, rwxo) (Charlie, rx) }
• file2: { (Andy, r) (Betty, r) (Charlie, rwo) }
• file3: { (Andy, rwo) (Betty, r) (Charlie, rwo) }

13

May 20, 2004 ECS 235 Slide #25

Default Permissions

• Normal: if not named, no rights over file
– Principle of Fail-Safe Defaults

• If many subjects, may use groups or
wildcards in ACL
– UNICOS: entries are (user, group, rights)

• If user is in group, has rights over file
• ‘*’ is wildcard for user, group

– (holly, *, r): holly can read file regardless of her group
– (*, gleep, w): anyone in group gleep can write file

May 20, 2004 ECS 235 Slide #26

Abbreviations

• ACLs can be long … so combine users
– UNIX: 3 classes of users: owner, group, rest
– rwxrwxrwx

rest
group
owner

– Ownership assigned based on creating process
• Some systems: if directory has setgid permission, file group

owned by group of directory (SunOS, Solaris)

14

May 20, 2004 ECS 235 Slide #27

ACLs + Abbreviations

• Augment abbreviated lists with ACLs
– Intent is to shorten ACL

• ACLs override abbreviations
– Exact method varies

• Example: IBM AIX
– Base permissions are abbreviations, extended

permissions are ACLs with user, group
– ACL entries can add rights, but on deny, access is

denied

May 20, 2004 ECS 235 Slide #28

Permissions in IBM AIX
attributes:
base permissions
owner(bishop): rw-
group(sys): r--
others: ---

extended permissions enabled
specify rw- u:holly
permit -w- u:heidi, g=sys
permit rw- u:matt
deny -w- u:holly, g=faculty

15

May 20, 2004 ECS 235 Slide #29

ACL Modification

• Who can do this?
– Creator is given own right that allows this
– System R provides a grant modifier (like a

copy flag) allowing a right to be transferred, so
ownership not needed

• Transferring right to another modifies ACL

May 20, 2004 ECS 235 Slide #30

Privileged Users

• Do ACLs apply to privileged users (root)?
– Solaris: abbreviated lists do not, but full-blown

ACL entries do
– Other vendors: varies

16

May 20, 2004 ECS 235 Slide #31

Groups and Wildcards
• Classic form: no; in practice, usually

– AIX: base perms gave group sys read only
permit -w- u:heidi, g=sys

line adds write permission for heidi when in that group
– UNICOS:

• holly : gleep : r
– user holly in group gleep can read file

• holly : * : r
– user holly in any group can read file

• * : gleep : r
– any user in group gleep can read file

May 20, 2004 ECS 235 Slide #32

Conflicts

• Deny access if any entry would deny access
– AIX: if any entry denies access, regardless or

rights given so far, access is denied
• Apply first entry matching subject

– Cisco routers: run packet through access control
rules (ACL entries) in order; on a match, stop,
and forward the packet; if no matches, deny

• Note default is deny so honors principle of fail-safe
defaults

17

May 20, 2004 ECS 235 Slide #33

Handling Default Permissions

• Apply ACL entry, and if none use defaults
– Cisco router: apply matching access control

rule, if any; otherwise, use default rule (deny)
• Augment defaults with those in the

appropriate ACL entry
– AIX: extended permissions augment base

permissions

May 20, 2004 ECS 235 Slide #34

Revocation Question

• How do you remove subject’s rights to a
file?
– Owner deletes subject’s entries from ACL, or

rights from subject’s entry in ACL
• What if ownership not involved?

– Depends on system
– System R: restore protection state to what it

was before right was given
• May mean deleting descendent rights too …

18

May 20, 2004 ECS 235 Slide #35

Windows NT ACLs

• Different sets of rights
– Basic: read, write, execute, delete, change permission,

take ownership
– Generic: no access, read (read/execute), change

(read/write/execute/delete), full control (all), special
access (assign any of the basics)

– Directory: no access, read (read/execute files in
directory), list, add, add and read, change (create, add,
read, execute, write files; delete subdirectories), full
control, special access

May 20, 2004 ECS 235 Slide #36

Accessing Files

• User not in file’s ACL nor in any group
named in file’s ACL: deny access

• ACL entry denies user access: deny access
• Take union of rights of all ACL entries

giving user access: user has this set of rights
over file

19

May 20, 2004 ECS 235 Slide #37

Capability Lists
• Rows of access control matrix
 file1 file2 file3
Andy rx r rwo
Betty rwxo r
Charlie rx rwo w
C-Lists:
• Andy: { (file1, rx) (file2, r) (file3, rwo) }
• Betty: { (file1, rwxo) (file2, r) }
• Charlie: { (file1, rx) (file2, rwo) (file3, w) }

May 20, 2004 ECS 235 Slide #38

Semantics

• Like a bus ticket
– Mere possession indicates rights that subject has over

object
– Object identified by capability (as part of the token)

• Name may be a reference, location, or something else
– Architectural construct in capability-based addressing;

this just focuses on protection aspects
• Must prevent process from altering capabilities

– Otherwise subject could change rights encoded in
capability or object to which they refer

20

May 20, 2004 ECS 235 Slide #39

Implementation

• Tagged architecture
– Bits protect individual words

• B5700: tag was 3 bits and indicated how word was to be
treated (pointer, type, descriptor, etc.)

• Paging/segmentation protections
– Like tags, but put capabilities in a read-only segment or

page
• CAP system did this

– Programs must refer to them by pointers
• Otherwise, program could use a copy of the capability—which

it could modify

May 20, 2004 ECS 235 Slide #40

Implementation (con’t)

• Cryptography
– Associate with each capability a cryptographic checksum

enciphered using a key known to OS
– When process presents capability, OS validates checksum
– Example: Amoeba, a distributed capability-based system

• Capability is (name, creating_server, rights, check_field) and is given
to owner of object

• check_field is 48-bit random number; also stored in table
corresponding to creating_server

• To validate, system compares check_field of capability with that
stored in creating_server table

• Vulnerable if capability disclosed to another process

21

May 20, 2004 ECS 235 Slide #41

Copying

• Copying: systems usually use copy flag
• Other approaches possible

– Example: Amoeba again; suppose Karl wants to let Matt read file
Karl owns, but not propagate this right

• Karl gives capability to server, requests restricted capability
• Server creates new capability (read only here), and sets check_field of

new capability to h(rights ⊕ check_field)
• Server gives this to Karl, who gives it to Matt
• Matt presents it to server to read file
• Server looks in table to get original check_field, recomputes new

check_field from original one and rights in capability
– If this matches the one in the capability, honor it
– If not, don’t

