Amplifying

* Allows temporary increase of privileges

* Needed for modular programming
— Module pushes, pops data onto stack
module stack .. endmodule.
— Variable x declared of type stack
var x: module;
— Only stack module can alter, read x

* So process doesn’t get capability, but needs it when x is
referenced???

May 25, 2004 ECS 235 Slide #1

Examples

 HYDRA: templates

— Associated with each procedure, function in module

— Adds rights to process capability while the procedure or function
is being executed

— Rights deleted on exit

* Intel iAPX 432: access descriptors for objects
— These are really capabilities
— 1 bit in this controls amplification

— When ADT constructed, permission bits of type control object set
to what procedure needs

— On call, if amplification bit in this permission is set, the above bits
or’ed with rights in access descriptor of object being passed

May 25, 2004 ECS 235 Slide #2

Revocation

* Scan all C-lists, remove relevant capabilities
— Far too expensive!
* Use indirection
— Each object has entry in a global object table
— Names in capabilities name the entry, not the object

* To revoke, zap the entry in the table

e Can have multiple entries for a single object to allow control
of different sets of rights and/or groups of users for each object

— Example: Amoeba: owner requests server change
random number in server table
 All capabilities for that object now invalid

May 25, 2004 ECS 235 Slide #3

Limits

* Problems if you don’t control copying of capabilities

Heidi (High Heidi (High

* *lough
Lough (Low) :‘W:Eil o Lough (Low)
Lou (L«

The capability to write file lough is Low, and Heidi is High
so she reads (copies) the capability; now she can write to a
Low file, violating the *-property!

May 25, 2004 ECS 235 Slide #4

Remedies

» Label capability itself

— Rights in capability depends on relation between its
compartment and that of object to which it refers

* In example, as as capability copied to High, and High
dominates object compartment (Low), write right removed

* Check to see if passing capability violates
security properties
— In example, it does, so copying refused

* Distinguish between “read” and “copy capability”
— Take-Grant Protection Model does this (“read”, “take™)

May 25, 2004 ECS 235 Slide #5

ACLs vs. Capabilities

* Both theoretically equivalent; consider 2 questions
1. Given a subject, what objects can it access, and how?
2. Given an object, what subjects can access it, and how?
— ACLs answer second easily; C-Lists, first
* Suggested that the second question, which in the
past has been of most interest, is the reason ACL-
based systems more common than capability-
based systems

— As first question becomes more important (in incident
response, for example), this may change

May 25, 2004 ECS 235 Slide #6

Locks and Keys

* Associate information (lock) with object,
information (key) with subject
— Latter controls what the subject can access and how

— Subject presents key; if it corresponds to any of the
locks on the object, access granted

* This can be dynamic
— ACLs, C-Lists static and must be manually changed

— Locks and keys can change based on system
constraints, other factors (not necessarily manual)

May 25, 2004 ECS 235 Slide #7

Cryptographic Implementation

* Enciphering key is lock; deciphering key is
key
— Encipher object o; store E,(0)
— Use subject’s key to compute D, (E,(0))
— Any of n can access o: store
0= (Eo), ..., E0))
— Requires consent of all n to access o: store
6 = (E\(Ex(...(E,(0))...))

May 25, 2004 ECS 235 Slide #8

Example: IBM

» IBM 370: process gets access key; pages
get storage key and fetch bit
— Fetch bit clear: read access only
— Fetch bit set, access key 0: process can write to
(any) page
— Fetch bit set, access key matches storage key:
process can write to page

— Fetch bit set, access key non-zero and does not
match storage key: no access allowed

May 25, 2004 ECS 235 Slide #9

Example: Cisco Router

* Dynamic access control lists

access-list 100 permit tcp any host 10.1.1.1 eq telnet
access-list 100 dynamic test timeout 180 permit ip any host \
10.1.2.3 time-range my-time
time-range my-time
periodic weekdays 9:00 to 17:00
line vty 0 2
login local
autocommand access-enable host timeout 10

¢ Limits external access to 10.1.2.3 to 9AM-5PM

— Adds temporary entry for connecting host once user
supplies name, password to router

— Connections good for 180 minutes
* Drops access control entry after that

May 25, 2004 ECS 235 Slide #10

Type Checking

* Lock is type, key is operation
— Example: UNIX system call write can’t work
on directory object but does work on file
— Example: split I&D space of PDP-11

— Example: countering buffer overflow attacks
on the stack by putting stack on non-
executable pages/segments

* Then code uploaded to buffer won’t execute
* Does not stop other forms of this attack, though ...

May 25, 2004 ECS 235 Slide #11

More Examples

* LOCK system:
— Compiler produces “data”
— Trusted process must change this type to “executable”
becore program can be executed
e Sidewinder firewall

— Subjects assigned domain, objects assigned type
» Example: ingress packets get one type, egress packets another

— All actions controlled by type, so ingress packets
cannot masquerade as egress packets (and vice versa)

May 25, 2004 ECS 235 Slide #12

Ring-Based Access Control

* Process (segment) accesses
another segment
* Read
* Execute
* Gate is an entry point for
calling segment
* Rights:
e rread
* W write
* g append
® ¢ execute

May 25, 2004 ECS 235 Slide #13

Reading/Writing/Appending

e Procedure executing in ring r
* Data segment with access bracket (a,, a,)
* Mandatory access rule

-r=<a allow access
—a, <r=<a, allowr access;notw, a access

—a,<r deny all access

May 25, 2004 ECS 235 Slide #14

Executing

e Procedure executing in ring r

e (Call procedure in segment with access
bracket (a,, a,) and call bracket (a,, a,)

* Mandatory access rule
-r<a allow access; ring-crossing fault
—a, <r=<a, allow access; no ring-crossing fault
—a, <r=a, allow access if through valid gate

—a;<r deny all access
May 25, 2004 ECS 235 Slide #15
Versions
e Multics
— 8 rings (from 0 to 7)

e Digital Equipment’s VAX

— 4 levels of privilege: user, monitor, executive,
kernel

e Older systems

— 2 levels of privilege: user, supervisor

May 25, 2004 ECS 235 Slide #16

PACLs

* Propagated Access Control List
— Implements ORGON

* Creator kept with PACL, copies
— Only owner can change PACL

— Subject reads object: object’s PACL associated with
subject

— Subject writes object: subject’s PACL associated with
object

* Notation: PACL, means s created object;
PACL(e) 1s PACL associated with entity e

May 25, 2004 ECS 235 Slide #17

Multiple Creators

» Betty reads Ann’s file dates
PACL(Betty) = PACLg,,, N PACL(dates)
= PACLy,,, N PACL,,,

* Betty creates file dc
PACL(dc) = PACLg, N PACL,,,

* PACLg,,, allows Char to access objects, but
PACL,,, does not; both allow June to access
objects

— June can read dc
— Char cannot read dc

May 25, 2004 ECS 235 Slide #18

Key Points

* Access control mechanisms provide
controls for users accessing files
* Many different forms

— ACLs, capabilities, locks and keys

* Type checking too
— Ring-based mechanisms (Mandatory)
— PACLs (ORCON)

May 25, 2004 ECS 235

Slide #19

Overview

Trust

Problems from lack of assurance

Types of assurance

Life cycle and assurance

Waterfall life cycle model

Other life cycle models

May 25, 2004 ECS 235

Slide #20

10

Trust

» Trustworthy entity has sufficient credible
evidence leading one to believe that the
system will meet a set of requirements

e Trust 1s a measure of trustworthiness
relying on the evidence

» Assurance 1s confidence that an entity
meets its security requirements based on
evidence provided by applying assurance

techniques
May 25,2004 ECS 235 Slide #21
Polic Statement of requirements that explicitly defines
y the security expectations of the mechanism(s)
T Provides justification that the mechanism meets policy
Assurance through assurance evidence and approvals based on
evidence
Mechani Executable entities that are designed and implemented
echanisms to meet the requirements of the policy
May 25,2004 ECS 235 Slide #22

11

Problem Sources

1. Requirements definitions, omissions, and mistakes

2. System design flaws

3. Hardware implementation flaws, such as wiring and chip flaws

4. Software implementation errors, program bugs, and compiler bugs

5. System use and operation errors and inadvertent mistakes

6. Willful system misuse

7. Hardware, communication, or other equipment malfunction

8. Environmental problems, natural causes, and acts of God

9. Evolution, maintenance, faulty upgrades, and decommissions

May 25, 2004 ECS 235 Slide #23

Examples

Challenger explosion

— Sensors removed from booster rockets to meet accelerated launch
schedule

* Deaths from faulty radiation therapy system
— Hardware safety interlock removed
— Flaws in software design

Bell V22 Osprey crashes

— Failure to correct for malfunctioning components; two faulty ones
could outvote a third

Intel 486 chip

May 25, 2004 ECS 235 Slide #24

12

Role of Requirements

* Requirements are statements of goals that
must be met

— Vary from high-level, generic issues to low-
level, concrete issues

» Security objectives are high-level security
issues

» Security requirements are specific, concrete
issues

May 25, 2004 ECS 235 Slide #25

Types of Assurance

* Policy assurance is evidence establishing security
requirements in policy is complete, consistent, technically
sound

* Design assurance is evidence establishing design
sufficient to meet requirements of security policy

* Implementation assurance is evidence establishing
implementation consistent with security requirements of
security policy

May 25, 2004 ECS 235 Slide #26

13

Types of Assurance

* Operational assurance 1s evidence
establishing system sustains the security
policy requirements during installation,
configuration, and day-to-day operation

— Also called administrative assurance

May 25, 2004 ECS 235 Slide #27

Life Cycle

Design and
implementation
refinement

Security requirements \1
A

Design 3
Assurance
justification \
4 Implementation
May 25,2004 ECS 235 Slide #28

14

Life Cycle

* Conception

e Manufacture

e Deployment

¢ Fielded Product Life

May 25, 2004 ECS 235 Slide #29
Conception

e Idea

— Decisions to pursue it
* Proof of concept
— See if idea has merit
* High-level requirements analysis
— What does “secure” mean for this concept?
— Is it possible for this concept to meet this meaning of security?

— Is the organization willing to support the additional resources
required to make this concept meet this meaning of security?

May 25, 2004 ECS 235 Slide #30

15

Manufacture

* Develop detailed plans for each group
involved

— May depend on use; internal product requires
no sales

* Implement the plans to create entity

— Includes decisions whether to proceed, for
example due to market needs

May 25, 2004 ECS 235 Slide #31

Deployment

* Delivery

— Assure that correct masters are delivered to
production and protected

— Distribute to customers, sales organizations

e Installation and configuration

May 25, 2004 ECS 235 Slide #32

16

Fielded Product Life

e Routine maintenance, patching

— Responsibility of engineering in small
organizations

— Responsibility may be in different group than
one that manufactures product

e Customer service, support organizations

e Retirement or decommission of product

May 25, 2004

ECS 235 Slide #33

17

