
1

May 27, 2004 ECS 235 Slide #1

Waterfall Life Cycle Model

• Requirements definition and analysis
– Functional and non-functional
– General (for customer), specifications

• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance

May 27, 2004 ECS 235 Slide #2

Relationship of Stages

Requirements
definition and
analysis

System and
software
design

Implementation
and unit
testing Integration

and system
testing

Operation
and
maintenance

2

May 27, 2004 ECS 235 Slide #3

Models
• Exploratory programming

– Develop working system quickly
– Used when detailed requirements specification cannot be

formulated in advance, and adequacy is goal
– No requirements or design specification, so low assurance

• Prototyping
– Objective is to establish system requirements
– Future iterations (after first) allow assurance techniques

May 27, 2004 ECS 235 Slide #4

Models
• Formal transformation

– Create formal specification
– Translate it into program using correctness-preserving

transformations
– Very conducive to assurance methods

• System assembly from reusable components
– Depends on whether components are trusted
– Must assure connections, composition as well
– Very complex, difficult to assure

3

May 27, 2004 ECS 235 Slide #5

Models

• Extreme programming
– Rapid prototyping and “best practices”
– Project driven by business decisions
– Requirements open until project complete
– Programmers work in teams
– Components tested, integrated several times a day
– Objective is to get system into production as quickly as

possible, then enhance it
– Evidence adduced after development needed for

assurance

May 27, 2004 ECS 235 Slide #6

Key Points

• Assurance critical for determining
trustworthiness of systems

• Different levels of assurance, from
informal evidence to rigorous mathematical
evidence

• Assurance needed at all stages of system
life cycle

4

May 27, 2004 ECS 235 Slide #7

Auditing

• Overview
• What is auditing?
• What does an audit system look like?
• How do you design an auditing system?
• Auditing mechanisms
• Examples: NFSv2, LAFS

May 27, 2004 ECS 235 Slide #8

What is Auditing?

• Logging
– Recording events or statistics to provide

information about system use and performance
• Auditing

– Analysis of log records to present information
about the system in a clear, understandable
manner

5

May 27, 2004 ECS 235 Slide #9

Uses

• Describe security state
– Determine if system enters unauthorized state

• Evaluate effectiveness of protection
mechanisms
– Determine which mechanisms are appropriate

and working
– Deter attacks because of presence of record

May 27, 2004 ECS 235 Slide #10

Problems

• What do you log?
– Hint: looking for violations of a policy, so

record at least what will show such violations
• What do you audit?

– Need not audit everything
– Key: what is the policy involved?

6

May 27, 2004 ECS 235 Slide #11

Audit System Structure

• Logger
– Records information, usually controlled by

parameters
• Analyzer

– Analyzes logged information looking for
something

• Notifier
– Reports results of analysis

May 27, 2004 ECS 235 Slide #12

Logger

• Type, quantity of information recorded
controlled by system or program
configuration parameters

• May be human readable or not
– If not, usually viewing tools supplied
– Space available, portability influence storage

format

7

May 27, 2004 ECS 235 Slide #13

Example: RACF

• Security enhancement package for IBM’s
MVS/VM

• Logs failed access attempts, use of
privilege to change security levels, and (if
desired) RACF interactions

• View events with LISTUSERS commands

May 27, 2004 ECS 235 Slide #14

RACF: Sample Entry
USER=EW125004 NAME=S.J.TURNER OWNER=SECADM CREATED=88.004
 DEFAULT-GROUP=HUMRES PASSDATE=88.004 PASS-INTERVAL=30
 ATTRIBUTES=ADSP
 REVOKE DATE=NONE RESUME-DATE=NONE
 LAST-ACCESS=88.020/14:15:10
 CLASS AUTHORIZATIONS=NONE
 NO-INSTALLATION-DATA
 NO-MODEL-NAME
 LOGON ALLOWED (DAYS) (TIME)
 ————————————————
 ANYDAY ANYTIME
 GROUP=HUMRES AUTH=JOIN CONNECT-OWNER=SECADM
 CONNECT-DATE=88.004
 CONNECTS= 15 UACC=READ LAST-CONNECT=88.018/16:45:06
 CONNECT ATTRIBUTES=NONE
 REVOKE DATE=NONE RESUME DATE=NONE
 GROUP=PERSNL AUTH=JOIN CONNECT-OWNER=SECADM CONNECT-DATE:88.004
 CONNECTS= 25 UACC=READ LAST-CONNECT=88.020/14:15:10
 CONNECT ATTRIBUTES=NONE
 REVOKE DATE=NONE RESUME DATE=NONE
 SECURITY-LEVEL=NONE SPECIFIED
 CATEGORY AUTHORIZATION
 NONE SPECIFIED

8

May 27, 2004 ECS 235 Slide #15

Example: Windows NT
• Different logs for different types of events

– System event logs record system crashes, component failures, and
other system events

– Application event logs record events that applications request be
recorded

– Security event log records security-critical events such as logging
in and out, system file accesses, and other events

• Logs are binary; use event viewer to see them
• If log full, can have system shut down, logging disabled,

or logs overwritten

May 27, 2004 ECS 235 Slide #16

Windows NT Sample Entry
Date: 2/12/2000 Source: Security
Time: 13:03 Category: Detailed Tracking
Type: Success EventID: 592
User:WINDSOR\Administrator
Computer: WINDSOR

Description:
A new process has been created:

New Process ID: 2216594592
Image File Name:

 \Program Files\Internet Explorer\IEXPLORE.EXE
Creator Process ID: 2217918496
User Name: Administrator
FDomain: WINDSOR
Logon ID: (0x0,0x14B4c4)

[would be in graphical format]

9

May 27, 2004 ECS 235 Slide #17

Analyzer

• Analyzes one or more logs
– Logs may come from multiple systems, or a

single system
– May lead to changes in logging
– May lead to a report of an event

May 27, 2004 ECS 235 Slide #18

Examples
• Using swatch to find instances of telnet from tcpd logs:

/telnet/&!/localhost/&!/*.site.com/

• Query set overlap control in databases
– If too much overlap between current query and past queries, do not answer

• Intrusion detection analysis engine (director)
– Takes data from sensors and determines if an intrusion is occurring

10

May 27, 2004 ECS 235 Slide #19

Notifier

• Informs analyst, other entities of results of
analysis

• May reconfigure logging and/or analysis on
basis of results

May 27, 2004 ECS 235 Slide #20

Examples

• Using swatch to notify of telnets
/telnet/&!/localhost/&!/*.site.com/ mail staff

• Query set overlap control in databases
– Prevents response from being given if too

much overlap occurs
• Three failed logins in a row disable user

account
– Notifier disables account, notifies sysadmin

11

May 27, 2004 ECS 235 Slide #21

Designing an Audit System
• Essential component of security mechanisms
• Goals determine what is logged

– Idea: auditors want to detect violations of policy, which provides a set of
constraints that the set of possible actions must satisfy

– So, audit functions that may violate the constraints
• Constraint pi : action ⇒ condition

May 27, 2004 ECS 235 Slide #22

Example: Bell-LaPadula
• Simple security condition and *-property

– S reads O ⇒ L(S) ≥ L(O)
– S writes O ⇒ L(S) ≤ L(O)
– To check for violations, on each read and write, must log L(S), L(O),

action (read, write), and result (success, failure)
– Note: need not record S, O!

• In practice, done to identify the object of the (attempted) violation and the
user attempting the violation

12

May 27, 2004 ECS 235 Slide #23

Remove Tranquility

• New commands to manipulate security
level must also record information
– S reclassify O to L(O´) ⇒ L(O) ≤ L(S) and

L(O´) ≤ L(S)
– Log L(O), L(O´), L(S), action (reclassify), and

result (success, failure)
– Again, need not record O or S to detect

violation
• But needed to follow up …

May 27, 2004 ECS 235 Slide #24

Example: Chinese Wall
• Subject S has COI(S) and CD(S)

– CDH(S) is set of company datasets that S has accessed
• Object O has COI(O) and CD(O)

– san(O) iff O contains only sanitized information
• Constraints

– S reads O ⇒ COI(O) ≠ COI(S) ∨ ∃Ó(CD(Ó) ∈ CDH(S))
– S writes O ⇒ (S canread O) ∧ ¬∃Ó(COI(O) = COI(Ó) ∧ S canread Ó ∧ ¬

san(Ó))

13

May 27, 2004 ECS 235 Slide #25

Recording
• S reads O ⇒ COI(O) ≠ COI(S) ∨ ∃Ó(CD(Ó) ∈ CDH(S))

– Record COI(O), COI(S), CDH(S), CD(Ó) if such an Ó exists, action
(read), and result (success, failure)

• S writes O ⇒ (S canread O) ∧ ¬∃Ó(COI(O) = COI(Ó) ∧ S canread Ó
∧ ¬san(Ó))
– Record COI(O), COI(S), CDH(S), plus COI(Ó) and CD(Ó) if such an Ó

exists, action (write), and result (success, failure)

May 27, 2004 ECS 235 Slide #26

Implementation Issues
• Show non-security or find violations?

– Former requires logging initial state as well as changes
• Defining violations

– Does “write” include “append” and “create directory”?
• Multiple names for one object

– Logging goes by object and not name
– Representations can affect this (if you read raw disks, you’re reading

files; can your auditing system determine which file?)

14

May 27, 2004 ECS 235 Slide #27

Syntactic Issues

• Data that is logged may be ambiguous
– BSM: two optional text fields followed by two

mandatory text fields
– If three fields, which of the optional fields is

omitted?
• Solution: use grammar to ensure well-

defined syntax of log files

May 27, 2004 ECS 235 Slide #28

Example
entry : date host prog [bad] user [“from” host] “to” user “on” tty
date : daytime
host : string
prog : string “:”
bad : “FAILED”
user : string
tty : “/dev/” string

• Log file entry format defined unambiguously
• Audit mechanism could scan, interpret entries without confusion

15

May 27, 2004 ECS 235 Slide #29

More Syntactic Issues

• Context
– Unknown user uses anonymous ftp to retrieve

file “/etc/passwd”
– Logged as such
– Problem: which /etc/passwd file?

• One in system /etc directory
• One in anonymous ftp directory /var/ftp/etc, and as

ftp thinks /var/ftp is the root directory, /etc/passwd
refers to /var/ftp/etc/passwd

May 27, 2004 ECS 235 Slide #30

Log Sanitization
• U set of users, P policy defining set of information C(U)

that U cannot see; log sanitized when all information in
C(U) deleted from log

• Two types of P
– C(U) can’t leave site

• People inside site are trusted and information not sensitive to them
– C(U) can’t leave system

• People inside site not trusted or (more commonly) information
sensitive to them

• Don’t log this sensitive information

16

May 27, 2004 ECS 235 Slide #31

Logging Organization

• Top prevents information from leaving site
– Users’ privacy not protected from system administrators, other administrative

personnel
• Bottom prevents information from leaving system

– Data simply not recorded, or data scrambled before recording

Logging system Log UsersSanitizer

Logging system Log UsersSanitizer

May 27, 2004 ECS 235 Slide #32

Reconstruction

• Anonymizing sanitizer cannot be undone
– No way to recover data from this

• Pseudonymizing sanitizer can be undone
– Original log can be reconstructed

• Importance
– Suppose security analysis requires access to

information that was sanitized?

17

May 27, 2004 ECS 235 Slide #33

Issue

• Key: sanitization must preserve properties
needed for security analysis

• If new properties added (because analysis
changes), may have to resanitize
information
– This requires pseudonymous sanitization or

the original log

May 27, 2004 ECS 235 Slide #34

Example
• Company wants to keep its IP addresses secret, but wants

a consultant to analyze logs for an address scanning attack
– Connections to port 25 on IP addresses 10.163.5.10, 10.163.5.11,

10.163.5.12, 10.163.5.13, 10.163.5.14, 10.163.5.15
– Sanitize with random IP addresses

• Cannot see sweep through consecutive IP addresses
– Sanitize with sequential IP addresses

• Can see sweep through consecutive IP addresses

18

May 27, 2004 ECS 235 Slide #35

Generation of Pseudonyms
1. Devise set of pseudonyms to replace sensitive information

• Replace data with pseudonyms
• Maintain table mapping pseudonyms to data

2. Use random key to encipher sensitive datum and use secret sharing
scheme to share key
• Used when insiders cannot see unsanitized data, but outsiders (law

enforcement) need to
• Requires t out of n people to read data

May 27, 2004 ECS 235 Slide #36

Application Logging

• Applications logs made by applications
– Applications control what is logged
– Typically use high-level abstractions such as:

su: bishop to root on /dev/ttyp0

– Does not include detailed, system call level
information such as results, parameters, etc.

19

May 27, 2004 ECS 235 Slide #37

System Logging
• Log system events such as kernel actions

– Typically use low-level events
3876 ktrace CALL execve(0xbfbff0c0,0xbfbff5cc,0xbfbff5d8)
3876 ktrace NAMI "/usr/bin/su"
3876 ktrace NAMI "/usr/libexec/ld-elf.so.1"
3876 su RET xecve 0
3876 su CALL __sysctl(0xbfbff47c,0x2,0x2805c928,0xbfbff478,0,0)
3876 su RET __sysctl 0
3876 su CALL mmap(0,0x8000,0x3,0x1002,0xffffffff,0,0,0)
3876 su RET mmap 671473664/0x2805e000
3876 su CALL geteuid
3876 su RET geteuid 0

– Does not include high-level abstractions such as loading libraries
(as above)

May 27, 2004 ECS 235 Slide #38

Contrast
• Differ in focus

– Application logging focuses on application events, like failure to
supply proper password, and the broad operation (what was the
reason for the access attempt?)

– System logging focuses on system events, like memory mapping
or file accesses, and the underlying causes (why did access fail?)

• System logs usually much bigger than application logs
• Can do both, try to correlate them

20

May 27, 2004 ECS 235 Slide #39

Design
• A posteriori design

– Need to design auditing mechanism for system not built with
security in mind

• Goal of auditing
– Detect any violation of a stated policy

• Focus is on policy and actions designed to violate policy; specific
actions may not be known

– Detect actions known to be part of an attempt to breach security
• Focus on specific actions that have been determined to indicate

attacks

May 27, 2004 ECS 235 Slide #40

Detect Violations of Known
Policy

• Goal: does system enter a disallowed state?
• Two forms

– State-based auditing
• Look at current state of system

– Transition-based auditing
• Look at actions that transition system from one

state to another

21

May 27, 2004 ECS 235 Slide #41

State-Based Auditing

• Log information about state and determine
if state allowed
– Assumption: you can get a snapshot of system

state
– Snapshot needs to be consistent
– Non-distributed system needs to be quiescent
– Distributed system can use Chandy-Lamport

algorithm, or some other algorithm, to obtain
this

May 27, 2004 ECS 235 Slide #42

Example

• File system auditing tools
– Thought of as analyzing single state (snapshot)
– In reality, analyze many slices of different state

unless file system quiescent
– Potential problem: if test at end depends on

result of test at beginning, relevant parts of
system state may have changed between the
first test and the last

• Classic TOCTTOU flaw

22

May 27, 2004 ECS 235 Slide #43

Transition-Based Auditing

• Log information about action, and examine
current state and proposed transition to
determine if new state would be disallowed
– Note: just analyzing the transition may not be

enough; you may need the initial state
– Tend to use this when specific transitions

always require analysis (for example, change
of privilege)

May 27, 2004 ECS 235 Slide #44

Example

• TCP access control mechanism intercepts
TCP connections and checks against a list
of connections to be blocked
– Obtains IP address of source of connection
– Logs IP address, port, and result

(allowed/blocked) in log file
– Purely transition-based (current state not

analyzed at all)

