Outline for April 21, 2005

1. Policy
 a. Policy languages: high level, low level

2. Bell-LaPadula Model (security classifications only)
 a. Go through security clearance, classification
 b. Describe simple security condition (no reads up), *-property (no writes down), discretionary security property
 c. State Basic Security Theorem: if it’s secure and transformations follow these rules, it’s still secure

3. Bell-LaPadula Model (security levels)
 a. Go through security clearance, categories, levels

4. Lattice models
 a. Poset, \(\leq \) the relation
 b. Reflexive, antisymmetric, transitive
 c. Greatest lower bound, least upper bound
 d. Example with complex numbers

5. Bell-LaPadula Model
 a. Apply lattice work
 i. Set of classes SC is a partially ordered set under relation \(\leq \) with GLB (greatest lower bound), LUB (least upper bound) operators
 ii. Note: is reflexive, transitive, antisymmetric
 iii. Examples: \((A, C) \leq (A', C')\) iff \(A \leq A'\) and \(C \subseteq C'\);
 \(\text{LUB}((A, C), (A', C')) = (\max(A, A'), C \cup C')\), \(\text{GLB}((A, C), (A', C')) = (\min(A, A'), C \cap C')\)
 b. Describe simple security condition (no reads up), *-property (no writes down), discretionary security property
 c. State Basic Security Theorem: if it’s secure and transformations follow these rules, it’s still secure
 d. Maximum, current security level

6. Example: DG/UX UNIX
 a. Labels and regions
 b. Multilevel directories
 c. File object labels
 d. MAC tuples

7. BLP: formally
 a. Elements of system: \(s \) subjects, \(o \) objects
 b. State space \(V = B \times M \times F \times H \) where:
 - \(B \) set of current accesses (i.e., access modes each subject has currently to each object);
 - \(M \) access permission matrix;
 - \(F \) consists of 3 functions: \(f_s \) is security level associated with each subject, \(f_o \) security level associated with each object, and \(f_c \) current security level for each subject
 - \(H \) hierarchy of system objects, functions \(h: O \rightarrow 2^O \) with two properties:
 If \(o_i \neq o_j \), then \(h(o_i) \cap h(o_j) = \emptyset \)
 There is no set \(\{ o_1, \ldots, o_k \} \subseteq O \) such that for each \(i \), \(o_i \in h(o_i) \) and \(o_{i+1} = o_1 \).
 c. Set of requests is \(R \)
 d. Set of decisions is \(D \)
 e. \(W \subseteq R \times D \times V \times V \) is motion from one state to another.
 f. System \(\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z \) such that \((x, y, z) \in \Sigma(R, D, W, z_0)\) iff \((x, y, z) \in W\) for each \(i \in T \); latter is an action of system
 g. Theorem: \(\Sigma(R, D, W, z_0) \) satisfies the simple security property for any initial state \(z_0 \) that satisfies the simple security property iff \(W \) satisfies the following conditions for each action \((r_i, d_i, (b', m', f', h'), (b, m, f, h))\):
i. each \((s, o, x) \in b' - b\) satisfies the simple security condition relative to \(f'\) (i.e., \(x\) is not read, or \(x\) is read and \(f(s) \) dominates \(f_o(o)\))

ii. if \((s, o, x) \in b\) does not satisfy the simple security condition relative to \(f'\), then \((s, o, x) \not\in b'\)

h. Theorem: \(\Sigma(R, D, W, z_0)\) satisfies the \(*\)-property relative to \(S' \subseteq S\), for any initial state \(z_0\) that satisfies the \(*\)-property relative to \(S'\) iff \(W\) satisfies the following conditions for each \((r_p, d_p, (b', m', f', h'), (b, m, f, h))\):

i. for each \(s \in S'\), any \((s, o, x) \in b' - b\) satisfies the \(*\)-property with respect to \(f'\)

ii. for each \(s \in S'\), if \((s, o, x) \in b\) does not satisfy the \(*\)-property with respect to \(f'\), then \((s, o, x) \not\in b'\)

i. Theorem: \(\Sigma(R, D, W, z_0)\) satisfies the \(ds\)-property iff the initial state \(z_0\) satisfies the \(ds\)-property and \(W\) satisfies the following conditions for each action \((r_p, d_p, (b', m', f', h'), (b, m, f, h))\):

i. if \((s, o, x) \in b' - b\), then \(x \in m'[s, o];\)

ii. if \((s, o, x) \in b\) and \(x \in m'[s, o]\) then \((s, o, x) \not\in b'\)

j. Basic Security Theorem: A system \(\Sigma(R, D, W, z_0)\) is secure iff \(z_0\) is a secure state and \(W\) satisfies the conditions of the above three theorems for each action.

8. BLP: formally
 a. Define ssc-preserving, \(*\)-property-preserving, \(ds\)-property-preserving
 b. Define relation \(W(\omega)\)
 c. Show conditions under which rules are ssc-preserving, \(*\)-property-preserving, \(ds\)-property-preserving
 d. Show when adding a state preserves those properties
 e. Example instantiation: \(get-read\) for Multics

9. Tranquility
 a. Strong tranquility
 b. Weak tranquility

10. System Z and the controversy