Outline for May 3, 2005

1. BLP: formally

a. Review:

- i. Elements of system: s_i subjects, o_i objects
- ii. State space $V = B \times M \times F \times H$ where: B set of current accesses (i.e., access modes each subject has currently to each object); *M* access permission matrix; F consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject *H* hierarchy of system objects, functions *h*: $O \rightarrow P(O)$ with two properties: If $o_i \neq o_j$, then $h(o_i) \cap h(o_j) = \emptyset$ There is no set $\{o_1, ..., o_k\} \subseteq O$ such that for each $i, o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$. iii. Set of requests is Riv. Set of decisions is D
- v. $W \subseteq R \times D \times V \times V$ is motion from one state to another.
- vi. System $\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z$ such that $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_t, z_{t-1}) \in W$ for each $i \in T$; latter is an action of system
- Theorem: $\Sigma(R, D, W, z_0)$ satisfies the simple security property for any initial state z_0 that satisfies the simple b. security property iff W satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. each $(s, o, x) \in b' - b$ satisfies the simple security condition relative to f' (i.e., x is not read, or x is read and $f_s(s)$ dominates $f_o(o)$)
 - ii. if $(s, o, x) \in b$ does not satisfy the simple security condition relative to f', then $(s, o, x) \notin b'$
- Theorem: $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$, for any initial state z_0 that satisfies the *property relative to S' iff W satisfies the following conditions for each $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - for each $s \in S'$, any $(s, o, x) \in b' b$ satisfies the *-property with respect to f'i.
 - ii. for each $s \in S'$, if $(s, o, x) \in b$ does not satisfy the *-property with respect to f', then $(s, o, x) \notin b'$
- d. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the ds-property iff the initial state z_0 satisfies the ds-property and W satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. if $(s, o, x) \in b' b$, then $x \in m'[s, o]$;
 - ii. if $(s, o, x) \in b$ and $x \in m'[s, o]$ then $(s, o, x) \notin b'$
- Basic Security Theorem: A system $\Sigma(R, D, W, z_0)$ is secure iff z_0 is a secure state and W satisfies the condie. tions of the above three theorems for each action.
- 2. BLP: formally
 - a. Define ssc-preserving, *-property-preserving, ds-property-preserving
 - b. Define relation $W(\omega)$
 - c. Show conditions under which rules are ssc-preserving, *-property-preserving, ds-property-preserving
 - d. Show when adding a state preserves those properties
 - Example instantiation: get-read for Multics e.
- 3. Tranquility
 - a. Strong tranquility
 - b. Weak tranquility
- 4. System Z and the controversy