Outline for May 3, 2005

1. BLP: formally
a. Review:
i. Elements of system: s_{i} subjects, o_{i} objects
ii. State space $V=B \times M \times F \times H$ where:
B set of current accesses (i.e., access modes each subject has currently to each object);
M access permission matrix;
F consists of 3 functions: f_{S} is security level associated with each subject, f_{o} security level associated with each object, and f_{c} current security level for each subject
H hierarchy of system objects, functions $h: O \rightarrow P(O)$ with two properties:
If $o_{i} \neq o_{j}$, then $h\left(o_{i}\right) \cap h\left(o_{j}\right)=\emptyset$
There is no set $\left\{o_{1}, \ldots, o_{k}\right\} \subseteq O$ such that for each $i, o_{i+1} \in h\left(o_{i}\right)$ and $o_{k+1}=o_{1}$.
iii. Set of requests is R
iv. Set of decisions is D
v. $W \subseteq R \times D \times V \times V$ is motion from one state to another.
vi. System $\Sigma\left(R, D, W, z_{0}\right) \subseteq X \times Y \times Z$ such that $(x, y, z) \in \Sigma\left(R, D, W, z_{0}\right)$ iff $\left(x_{t}, y_{t}, z_{t}, z_{t-1}\right) \in W$ for each $i \in T$; latter is an action of system
b. Theorem: $\Sigma\left(R, D, W, z_{0}\right)$ satisfies the simple security property for any initial state z_{0} that satisfies the simple security property iff W satisfies the following conditions for each action $\left(r_{i}, d_{i},\left(b^{\prime}, m^{\prime}, f^{\prime}, h\right),(b, m, f, h)\right)$:
i. each $(s, o, x) \in b^{\prime}-b$ satisfies the simple security condition relative to f^{\prime} (i.e., x is not read, or x is read and $f_{s}(s)$ dominates $f_{o}(o)$)
ii. if $(s, o, x) \in b$ does not satisfy the simple security condition relative to f^{\prime}, then $(s, o, x) \notin b^{\prime}$
c. Theorem: $\Sigma\left(R, D, W, z_{0}\right)$ satisfies the *-property relative to $S^{\prime} \subseteq S$, for any initial state z_{0} that satisfies the *property relative to S^{\prime} iff W satisfies the following conditions for each $\left(r_{i}, d_{i},\left(b^{\prime}, m^{\prime}, f^{\prime}, h^{\prime}\right),(b, m, f, h)\right)$:
i. for each $s \in S^{\prime}$, any $(s, o, x) \in b^{\prime}-b$ satisfies the *-property with respect to f^{\prime}
ii. for each $s \in S^{\prime}$, if $(s, o, x) \in b$ does not satisfy the *-property with respect to f^{\prime}, then $(s, o, x) \notin b^{\prime}$
d. Theorem: $\Sigma\left(R, D, W, z_{0}\right)$ satisfies the ds-property iff the initial state z_{0} satisfies the ds-property and W satisfies the following conditions for each action $\left(r_{i}, d_{i},\left(b^{\prime}, m^{\prime}, f^{\prime}, h^{\prime}\right),(b, m, f, h)\right)$:
i. if $(s, o, x) \in b^{\prime}-b$, then $x \in m^{\prime}[s, o]$;
ii. if $(s, o, x) \in b$ and $x \in m^{\prime}[s, o]$ then $(s, o, x) \notin b^{\prime}$
e. Basic Security Theorem: A system $\Sigma\left(R, D, W, z_{0}\right)$ is secure iff z_{0} is a secure state and W satisfies the conditions of the above three theorems for each action.
2. BLP: formally
a. Define ssc-preserving, *-property-preserving, ds-property-preserving
b. Define relation $W(\omega)$
c. Show conditions under which rules are ssc-preserving, *-property-preserving, ds-property-preserving
d. Show when adding a state preserves those properties
e. Example instantiation: get-read for Multics
3. Tranquility
a. Strong tranquility
b. Weak tranquility
4. System Z and the controversy
