Outline for May 3, 2005

1. BLP: formally
 a. Review:
 i. Elements of system: \(s_i \) subjects, \(o_i \) objects
 ii. State space \(V = B \times M \times F \times H \) where:
 - \(B \) set of current accesses (i.e., access modes each subject has currently to each object);
 - \(M \) access permission matrix;
 - \(F \) consists of 3 functions: \(f_s \) is security level associated with each subject, \(f_o \) security level associated with each object, and \(f_c \) current security level for each subject
 - \(H \) hierarchy of system objects, functions \(h: O \rightarrow P(O) \) with two properties:
 - If \(o_i \not\in o_j \), then \(h(o_i) \cap h(o_j) = \emptyset \)
 - There is no set \{ \(o_1, \ldots, o_k \) \} \subseteq O such that for each \(i \), \(o_{i+1} \in h(o_i) \) and \(o_k+1 = o_1 \).
 iii. Set of requests is \(R \)
 iv. Set of decisions is \(D \)
 v. \(W \subseteq R \times D \times V \times V \) is motion from one state to another.
 vi. System \(\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z \) such that \((x, y, z) \in \Sigma(R, D, W, z_0) \) iff \((x_p, y_p, z_p, z_{t-1}) \in W \) for each \(i \in T \);
 latter is an action of system
 b. Theorem: \(\Sigma(R, D, W, z_0) \) satisfies the simple security property for any initial state \(z_0 \) that satisfies the simple security property iff \(W \) satisfies the following conditions for each action \((r_i, d_i, (b', m', f', h'), (b, m, f, h)) \):
 i. each \((s, o, x) \in b' - b \) satisfies the simple security condition relative to \(f' \) (i.e., \(x \) is not read, or \(x \) is read and \(f_s(x) \) dominates \(f_s(o) \))
 ii. if \((s, o, x) \in b \) does not satisfy the simple security condition relative to \(f' \), then \((s, o, x) \not\in b' \)
 c. Theorem: \(\Sigma(R, D, W, z_0) \) satisfies the \(* \)-property relative to \(S' \subseteq S \), for any initial state \(z_0 \) that satisfies the \(* \)-property relative to \(S' \) iff \(W \) satisfies the following conditions for each action \((r_i, d_i, (b', m', f', h'), (b, m, f, h)) \):
 i. for each \(s \in S' \), any \((s, o, x) \in b' - b \) satisfies the \(* \)-property with respect to \(f' \)
 ii. for each \(s \in S' \), if \((s, o, x) \in b \) does not satisfy the \(* \)-property with respect to \(f' \), then \((s, o, x) \not\in b' \)
 d. Theorem: \(\Sigma(R, D, W, z_0) \) satisfies the ds-property iff the initial state \(z_0 \) satisfies the ds-property and \(W \) satisfies the following conditions for each action \((r_i, d_i, (b', m', f', h'), (b, m, f, h)) \):
 i. if \((s, o, x) \in b' - b \), then \(x \in m'[s, o] \)
 ii. if \((s, o, x) \in b \) and \(x \in m'[s, o] \) then \((s, o, x) \not\in b' \)
 e. Basic Security Theorem: A system \(\Sigma(R, D, W, z_0) \) is secure iff \(z_0 \) is a secure state and \(W \) satisfies the conditions of the above three theorems for each action.

2. BLP: formally
 a. Define ssc-preserving, \(* \)-property-preserving, ds-property-preserving
 b. Define relation \(W(o) \)
 c. Show conditions under which rules are ssc-preserving, \(* \)-property-preserving, ds-property-preserving
 d. Show when adding a state preserves those properties
 e. Example instantiation: get-read for Multics

3. Tranquility
 a. Strong tranquility
 b. Weak tranquility

4. System Z and the controversy