Create Operation

• Must handle type, tickets of new entity
• Relation $can\cdot create(a, b)$
 – Subject of type a can create entity of type b
• Rule of acyclic creates:

![Diagram of create operation relation]
Types

• $cr(a, b)$: tickets introduced when subject of type a creates entity of type b

• B object: $cr(a, b) \subseteq \{ b/r: c \in RI \}$

• B subject: $cr(a, b)$ has two parts
 – $cr_p(a, b)$ added to A, $cr_c(a, b)$ added to B
 – A gets $B/r:c$ if $b/r:c$ in $cr_p(a, b)$
 – B gets $A/r:c$ if $a/r:c$ in $cr_c(a, b)$
Non-Distinct Types

$cr(a, a)$: who gets what?

- $self/r:c$ are tickets for creator
- $a/r:c$ tickets for created

$cr(a, a) = \{ a/r:c, self/r:c \mid r:c \in R \}$
Attenuating Create Rule

$cr(a, b)$ attenuating if:
1. $cr_C(a, b) \subseteq cr_P(a, b)$ and
2. $a/r:c \in cr_P(a, b) \Rightarrow self/r:c \in cr_P(a, b)$
Safety Result

• If the scheme is acyclic and attenuating, the safety question is decidable
Expressive Power

• How do the sets of systems that models can describe compare?
 – If HRU equivalent to SPM, SPM provides more specific answer to safety question
 – If HRU describes more systems, SPM applies only to the systems it can describe
HRU vs. SPM

• SPM more abstract
 – Analyses focus on limits of model, not details of representation

• HRU allows revocation
 – SMP has no equivalent to delete, destroy

• HRU allows multiparent creates
 – SMP cannot express multiparent creates easily, and not at all if the parents are of different types because *can•create* allows for only one type of creator
Multiparent Create

• Solves mutual suspicion problem
 – Create proxy jointly, each gives it needed rights

• In HRU:

 `command multicreate(s_0, s_1, o)
 if r in a[s_0, s_1] and r in a[s_1, s_0]
 then
 create object o;
 enter r into a[s_0, o];
 enter r into a[s_1, o];
 end`
SPM and Multiparent Create

• can create extended in obvious way
 – \(cc \subseteq TS \times \ldots \times TS \times T \)

• Symbols
 – \(X_1, \ldots, X_n \) parents, \(Y \) created
 – \(R_{1,i}, R_{2,i}, R_{3}, R_{4,i} \subseteq R \)

• Rules
 – \(cr_{P,i}(\tau(X_1), \ldots, \tau(X_n)) = Y/R_{1,1} \cup X_i/R_{2,i} \)
 – \(cr_{C}(\tau(X_1), \ldots, \tau(X_n)) = Y/R_{3} \cup X_1/R_{4,1} \cup \ldots \cup X_n/R_{4,n} \)
Example

• Anna, Bill must do something cooperatively
 – But they don’t trust each other
• Jointly create a proxy
 – Each gives proxy only necessary rights
• In ESPM:
 – Anna, Bill type a; proxy type p; right $x \in R$
 – $cc(a, a) = p$
 – $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 – $cr_{proxy}(a, a, p) = \{\text{Anna}/x, \text{Bill}/x\}$
2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2-parent joint create
- Definition of 3-parent joint create (subjects \(P_1, P_2, P_3 \); child \(C \)):
 - \(cc(\tau(P_1), \tau(P_2), \tau(P_3)) = Z \subseteq T \)
 - \(cr_{P_1}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{1,1} \cup P_1/R_{2,1} \)
 - \(cr_{P_2}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{2,1} \cup P_2/R_{2,2} \)
 - \(cr_{P_3}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{3,1} \cup P_3/R_{2,3} \)
General Approach

• Define agents for parents and child
 – Agents act as surrogates for parents
 – If create fails, parents have no extra rights
 – If create succeeds, parents, child have exactly same rights as in 3-parent creates
 • Only extra rights are to agents (which are never used again, and so these rights are irrelevant)
Entities and Types

- Parents P_1, P_2, P_3 have types p_1, p_2, p_3
- Child C of type c
- Parent agents A_1, A_2, A_3 of types a_1, a_2, a_3
- Child agent S of type s
- Type t is parentage
 - if $X/t \in \text{dom}(Y)$, X is Y’s parent
- Types t, a_1, a_2, a_3, s are new types
Can\textbullet{}Create

- Following added to can\textbullet{}create:
 - $cc(p_1) = a_1$
 - $cc(p_2, a_1) = a_2$
 - $cc(p_3, a_2) = a_3$
 - Parents creating their agents; note agents have maximum of 2 parents
 - $cc(a_3) = s$
 - Agent of all parents creates agent of child
 - $cc(s) = c$
 - Agent of child creates child
Creation Rules

- Following added to create rule:
 - $cr_p(p_1, a_1) = \emptyset$
 - $cr_c(p_1, a_1) = p_1/Rtc$
 - Agent’s parent set to creating parent; agent has all rights over parent
 - $cr_{p_{first}}(p_2, a_1, a_2) = \emptyset$
 - $cr_{p_{second}}(p_2, a_1, a_2) = \emptyset$
 - $cr_c(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc$
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
Creation Rules

- \(cr_{P_{first}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_{P_{second}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_{C}(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc \)
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- \(cr_{P}(a_3, s) = \emptyset \)
- \(cr_{C}(a_3, s) = a_3/tc \)
 - Child’s agent has third agent as parent \(cr_{P}(a_3, s) = \emptyset \)
- \(cr_{P}(s, c) = C/Rtc \)
- \(cr_{C}(s, c) = c/R_3t \)
 - Child’s agent gets full rights over child; child gets \(R_3 \) rights over agent
Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights
 - $link_1(A_1, A_2) = A_1/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2)$
 - $link_1(A_2, A_3) = A_2/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3)$
 - $link_2(S, A_3) = A_3/t \in \text{dom}(S) \land C/t \in \text{dom}(C)$
 - $link_3(A_1, C) = C/t \in \text{dom}(A_1)$
 - $link_3(A_2, C) = C/t \in \text{dom}(A_2)$
 - $link_3(A_3, C) = C/t \in \text{dom}(A_3)$
 - $link_4(A_1, P_1) = P_1/t \in \text{dom}(A_1) \land A_1/t \in \text{dom}(A_1)$
 - $link_4(A_2, P_2) = P_2/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2)$
 - $link_4(A_3, P_3) = P_3/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3)$
Filter Functions

- \(f_1(a_2, a_1) = \frac{a_1}{t} \cup c/Rtc \)
- \(f_1(a_3, a_2) = \frac{a_2}{t} \cup c/Rtc \)
- \(f_2(s, a_3) = \frac{a_3}{t} \cup c/Rtc \)
- \(f_3(a_1, c) = \frac{p_1}{R_{4,1}} \)
- \(f_3(a_2, c) = \frac{p_2}{R_{4,2}} \)
- \(f_3(a_3, c) = \frac{p_3}{R_{4,3}} \)
- \(f_4(a_1, p_1) = \frac{c}{R_{1,1}} \cup \frac{p_1}{R_{2,1}} \)
- \(f_4(a_2, p_2) = \frac{c}{R_{1,2}} \cup \frac{p_2}{R_{2,2}} \)
- \(f_4(a_3, p_3) = \frac{c}{R_{1,3}} \cup \frac{p_3}{R_{2,3}} \)
Construction

Create A_1, A_2, A_3, S, C; then

- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- A_1 has P_1/Rtc
- A_2 has $P_2/Rtc \cup A_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has C/R_3
Construction

• Only $link_2(S, A_3)$ true \Rightarrow apply f_2
 - A_3 has $P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc$

• Now $link_1(A_3, A_2)$ true \Rightarrow apply f_1
 - A_2 has $P_2/Rtc \cup A_1/tc \cup A_2/t \cup C/Rtc$

• Now $link_1(A_2, A_1)$ true \Rightarrow apply f_1
 - A_1 has $P_2/Rtc \cup A_1/tc \cup A_1/t \cup C/Rtc$

• Now all $link_3$s true \Rightarrow apply f_3
 - C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$
Finish Construction

• Now link_4's true \Rightarrow apply f_4
 – P_1 has $C/R_{1,1} \cup P_1/R_{2,1}$
 – P_2 has $C/R_{1,2} \cup P_2/R_{2,2}$
 – P_3 has $C/R_{1,3} \cup P_3/R_{2,3}$

• 3-parent joint create gives same rights to P_1, P_2, P_3, C

• If create of C fails, link_2 fails, so construction fails
Theorem

- The two-parent joint creation operation can implement an n-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.

- **Proof**: by construction, as above
 - Difference is that the two systems need not start at the same initial state
Theorems

- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme
Expressiveness

- Graph-based representation to compare models
- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices
Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes P_1, P_2, P_3 parents
 - Create node C with type c with edges of type e
 - Add node A_1 of type a and edge from P_1 to A_1 of type e'
Next Step

- A_1, P_2 create A_2; A_2, P_3 create A_3
- Type of nodes, edges are a and e'

Diagram:

- Nodes: $P_1, P_2, P_3, A_1, A_2, A_3$
- Edges: $P_1 \rightarrow A_1, A_1 \rightarrow A_2, A_2 \rightarrow A_3, P_2 \rightarrow A_2, P_3 \rightarrow A_3$
Next Step

• A_3 creates S, of type a
• S creates C, of type c
Last Step

- Edge adding operations:
 - $P_1 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_1 to C edge type e
 - $P_2 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_2 to C edge type e
 - $P_3 \rightarrow A_3 \rightarrow S \rightarrow C$: P_3 to C edge type e
Definitions

• **Scheme**: graph representation as above
• **Model**: set of schemes
• Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted
Example

• Above 2-parent joint creation simulation in scheme TWO

• Equivalent to 3-parent joint creation scheme THREE in which P_1, P_2, P_3, C are of same type as in TWO, and edges from P_1, P_2, P_3 to C are of type e, and no types a and e' exist in TWO
Simulation

Scheme A simulates scheme B iff

• every state B can reach has a corresponding state in A that A can reach; and

• every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach

 – The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of $THREE$
Expressive Power

• If scheme in MA no scheme in MB can simulate, MB less expressive than MA
• If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA
• If MA as expressive as MB and vice versa, MA and MB equivalent
Example

• Scheme A in model M
 – Nodes X_1, X_2, X_3
 – 2-parent joint create
 – 1 node type, 1 edge type
 – No edge adding operations
 – Initial state: X_1, X_2, X_3, no edges

• Scheme B in model N
 – All same as A except no 2-parent joint create
 – 1-parent create

• Which is more expressive?
Can A Simulate B?

- Scheme A simulates 1-parent create: have both parents be same node
 - Model M as expressive as model N
Can B Simulate A?

- Suppose X_1, X_2 jointly create Y in A
 - Edges from X_1, X_2 to Y, no edge from X_3 to Y
- Can B simulate this?
 - Without loss of generality, X_1 creates Y
 - Must have edge adding operation to add edge from X_2 to Y
 - One type of node, one type of edge, so operation can add edge between any 2 nodes
No

- All nodes in A have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from X_2 to C can add one from X_3 to C
 - A cannot enter this state
 - B cannot transition to a state in which Y has even number of incoming edges
 - No remove rule
- So B cannot simulate A; N less expressive than M
Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models.
- ESPM more expressive than SPM
 - ESPM multiparent and monotonic
 - SPM monotonic but single parent
Typed Access Matrix Model

- Like ACM, but with set of types T
 - All subjects, objects have types
 - Set of types for subjects TS
- Protection state is (S, O, τ, A)
 - $\tau: O \rightarrow T$ specifies type of each object
 - If X subject, $\tau(X)$ in TS
 - If X object, $\tau(X)$ in $T - TS$
Create Rules

• Subject creation
 – create subject s of type ts
 – s must not exist as subject or object when operation executed
 – $ts \in TS$

• Object creation
 – create object o of type to
 – o must not exist as subject or object when operation executed
 – $to \in T - TS$
Create Subject

• Precondition: \(s \notin S \)
• Primitive command: create subject \(s \) of type \(t \)
• Postconditions:
 – \(S' = S \cup \{ s \} \), \(O' = O \cup \{ s \} \)
 – \((\forall y \in O)[\tau'(y) = \tau(y)], \ \tau'(s) = t\)
 – \((\forall y \in O')[a'[s, y] = \emptyset], (\forall x \in S')[a'[x, s] = \emptyset]\)
 – \((\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]\)
Create Object

• Precondition: $o \notin O$

• Primitive command: create object o of type t

• Postconditions:
 – $S^\prime = S$, $O^\prime = O \cup \{ o \}$
 – $(\forall y \in O)[\tau^\prime(y) = \tau(y)]$, $\tau^\prime(o) = t$
 – $(\forall x \in S^\prime)[a^\prime[x, o] = \emptyset]$
 – $(\forall x \in S)(\forall y \in O)[a^\prime[x, y] = a[x, y]]$
Definitions

• MTAM Model: TAM model without delete, destroy
 – MTAM is Monotonic TAM

• $\alpha(x_1 : t_1, \ldots, x_n : t_n)$ create command
 – t_i child type in α if any of create subject x_i of type t_i or create object x_i of type t_i occur in α
 – t_i parent type otherwise
Cyclic Creates

\textbf{command} \textit{havoc}(s_1 : u, s_2 : u, o_1 : v, o_2 : v, o_3 : w, o_4 : w) \\
create subject \textit{s}_1 \textbf{of type} \textit{u}; \\
create object \textit{o}_1 \textbf{of type} \textit{v}; \\
create object \textit{o}_3 \textbf{of type} \textit{w}; \\
enter \textit{r} \textbf{into} \textit{a}[s_2, s_1]; \\
enter \textit{r} \textbf{into} \textit{a}[s_2, o_2]; \\
enter \textit{r} \textbf{into} \textit{a}[s_2, o_4] \\
\textbf{end}
Creation Graph

- u, v, w child types
- u, v, w also parent types
- Graph: lines from parent types to child types
- This one has cycles
Theorems

- Safety decidable for systems with acyclic MTAM schemes
- Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 - “ternary” means commands have no more than 3 parameters
 - Equivalent in expressive power to MTAM
Key Points

• Safety problem undecidable
• Limiting scope of systems can make problem decidable
• Types critical to safety problem’s analysis