Entities and Types

• Parents P_1, P_2, P_3 have types p_1, p_2, p_3
• Child C of type c
• Parent agents A_1, A_2, A_3 of types a_1, a_2, a_3
• Child agent S of type s
• Type t is parentage
 – if $X/t \in \text{dom}(Y)$, X is Y’s parent
• Types t, a_1, a_2, a_3, s are new types
Can•Create

• Following added to can•create:
 – \(cc(p_1) = a_1 \)
 – \(cc(p_2, a_1) = a_2 \)
 – \(cc(p_3, a_2) = a_3 \)
 • Parents creating their agents; note agents have maximum of 2 parents
 – \(cc(a_3) = s \)
 • Agent of all parents creates agent of child
 – \(cc(s) = c \)
 • Agent of child creates child
Creation Rules

- Following added to create rule:
 - \(cr_P(p_1, a_1) = \emptyset \)
 - \(cr_C(p_1, a_1) = p_1/Rtc \)
 - Agent’s parent set to creating parent; agent has all rights over parent
 - \(cr_{P_{\text{first}}}(p_2, a_1, a_2) = \emptyset \)
 - \(cr_{P_{\text{second}}}(p_2, a_1, a_2) = \emptyset \)
 - \(cr_C(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc \)
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
Creation Rules

- \(cr_{P_{\text{first}}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_{P_{\text{second}}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_{C}(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc \)
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- \(cr_{P}(a_3, s) = \emptyset \)
- \(cr_{C}(a_3, s) = a_3/tc \)
 - Child’s agent has third agent as parent \(cr_{P}(a_3, s) = \emptyset \)
- \(cr_{P}(s, c) = C/Rtc \)
- \(cr_{C}(s, c) = c/R_3 t \)
 - Child’s agent gets full rights over child; child gets \(R_3 \) rights over agent
Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights
 - \(\text{link}_1(A_1, A_2) = A_1/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2) \)
 - \(\text{link}_1(A_2, A_3) = A_2/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3) \)
 - \(\text{link}_2(S, A_3) = A_3/t \in \text{dom}(S) \land C/t \in \text{dom}(C) \)
 - \(\text{link}_3(A_1, C) = C/t \in \text{dom}(A_1) \)
 - \(\text{link}_3(A_2, C) = C/t \in \text{dom}(A_2) \)
 - \(\text{link}_3(A_3, C) = C/t \in \text{dom}(A_3) \)
 - \(\text{link}_4(A_1, P_1) = P_1/t \in \text{dom}(A_1) \land A_1/t \in \text{dom}(A_1) \)
 - \(\text{link}_4(A_2, P_2) = P_2/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2) \)
 - \(\text{link}_4(A_3, P_3) = P_3/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3) \)
Filter Functions

- \(f_1(a_2, a_1) = a_1/t \cup c/Rtc \)
- \(f_1(a_3, a_2) = a_2/t \cup c/Rtc \)
- \(f_2(s, a_3) = a_3/t \cup c/Rtc \)
- \(f_3(a_1, c) = p_1/R_{4,1} \)
- \(f_3(a_2, c) = p_2/R_{4,2} \)
- \(f_3(a_3, c) = p_3/R_{4,3} \)
- \(f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1} \)
- \(f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2} \)
- \(f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3} \)
Construction

Create A_1, A_2, A_3, S, C; then

- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- A_1 has P_1/Rtc
- A_2 has $P_2/Rtc \cup A_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has C/R_3
Construction

• Only \(link_2(S, A_3) \) true \(\Rightarrow \) apply \(f_2 \)
 - \(A_3 \) has \(P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc \)

• Now \(link_1(A_3, A_2) \) true \(\Rightarrow \) apply \(f_1 \)
 - \(A_2 \) has \(P_2/Rtc \cup A_1/tc \cup A_2/t \cup C/Rtc \)

• Now \(link_1(A_2, A_1) \) true \(\Rightarrow \) apply \(f_1 \)
 - \(A_1 \) has \(P_2/Rtc \cup A_1/tc \cup A_1/t \cup C/Rtc \)

• Now all \(link_3 \)s true \(\Rightarrow \) apply \(f_3 \)
 - \(C \) has \(C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3} \)
Finish Construction

• Now link_4s true \Rightarrow apply f_4
 – P_1 has $\text{C}/R_{1,1} \cup \text{P}_1/R_{2,1}$
 – P_2 has $\text{C}/R_{1,2} \cup \text{P}_2/R_{2,2}$
 – P_3 has $\text{C}/R_{1,3} \cup \text{P}_3/R_{2,3}$

• 3-parent joint create gives same rights to P_1, P_2, P_3, C

• If create of C fails, link_2 fails, so construction fails
Theorem

- The two-parent joint creation operation can implement an n-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.

- **Proof**: by construction, as above
 - Difference is that the two systems need not start at the same initial state
Theorems

- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme
Expressiveness

• Graph-based representation to compare models

• Graph
 – Vertex: represents entity, has static type
 – Edge: represents right, has static type

• Graph rewriting rules:
 – Initial state operations create graph in a particular state
 – Node creation operations add nodes, incoming edges
 – Edge adding operations add new edges between existing vertices
Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes P_1, P_2, P_3 parents
 - Create node C with type c with edges of type e
 - Add node A_1 of type a and edge from P_1 to A_1 of type e'

\[\begin{array}{cccc}
 P_1 & & P_2 & P_3 \\
 \downarrow & & \text{--} & \\
 A_1 & & & \\
\end{array}\]
Next Step

• A_1, P_2 create A_2; A_2, P_3 create A_3
• Type of nodes, edges are a and e'
Next Step

- A_3 creates S, of type a
- S creates C, of type c
Last Step

- Edge adding operations:
 - $P_1 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_1 to C edge type e
 - $P_2 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_2 to C edge type e
 - $P_3 \rightarrow A_3 \rightarrow S \rightarrow C$: P_3 to C edge type e
Definitions

• *Scheme*: graph representation as above
• *Model*: set of schemes
• Schemes A, B *correspond* if graph for both is identical when all nodes with types not in A and edges with types in A are deleted
Example

- Above 2-parent joint creation simulation in scheme *TWO*
- Equivalent to 3-parent joint creation scheme *THREE* in which P_1, P_2, P_3, C are of same type as in *TWO*, and edges from P_1, P_2, P_3 to C are of type e, and no types a and e' exist in *TWO*
Simulation

Scheme A simulates scheme B iff

- every state B can reach has a corresponding state in A that A can reach; and

- every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach
 - The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of $THREE$
Expressive Power

• If scheme in MA no scheme in MB can simulate, MB less expressive than MA

• If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA

• If MA as expressive as MB and vice versa, MA and MB equivalent
Example

• Scheme A in model M
 – Nodes X_1, X_2, X_3
 – 2-parent joint create
 – 1 node type, 1 edge type
 – No edge adding operations
 – Initial state: X_1, X_2, X_3, no edges

• Scheme B in model N
 – All same as A except no 2-parent joint create
 – 1-parent create

• Which is more expressive?
Can A Simulate B?

- Scheme A simulates 1-parent create: have both parents be same node
 - Model M as expressive as model N
Can B Simulate A?

- Suppose X_1, X_2 jointly create Y in A
 - Edges from X_1, X_2 to Y, no edge from X_3 to Y
- Can B simulate this?
 - Without loss of generality, X_1 creates Y
 - Must have edge adding operation to add edge from X_2 to Y
 - One type of node, one type of edge, so operation can add edge between any 2 nodes
No

- All nodes in A have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from X_2 to C can add one from X_3 to C
 - A cannot enter this state
 - B cannot transition to a state in which Y has even number of incoming edges
 - No remove rule
- So B cannot simulate A; N less expressive than M
Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models
- ESPM more expressive than SPM
 - ESPM multiparent and monotonic
 - SPM monotonic but single parent
Typed Access Matrix Model

• Like ACM, but with set of types T
 – All subjects, objects have types
 – Set of types for subjects TS
• Protection state is (S, O, τ, A)
 – $\tau:O\rightarrow T$ specifies type of each object
 – If X subject, $\tau(X)$ in TS
 – If X object, $\tau(X)$ in $T – TS$
Create Rules

- **Subject creation**
 - `create subject s of type ts`
 - `s` must not exist as subject or object when operation executed
 - `ts ∈ TS`

- **Object creation**
 - `create object o of type to`
 - `o` must not exist as subject or object when operation executed
 - `to ∈ T – TS`
Create Subject

- Precondition: \(s \notin S \)
- Primitive command: \textbf{create subject} \(s \) of type \(t \)
- Postconditions:
 - \(S' = S \cup \{ s \} \), \(O' = O \cup \{ s \} \)
 - \((\forall y \in O)[\tau'(y) = \tau(y)], \; \tau'(s) = t \)
 - \((\forall y \in O')[a'[s, y] = \emptyset], \; (\forall x \in S')[a'[x, s] = \emptyset] \)
 - \((\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]] \)
Create Object

• Precondition: \(o \notin O \)

• Primitive command: create object \(o \) of type \(t \)

• Postconditions:
 \[S' = S, \quad O' = O \cup \{ o \} \]
 \[(\forall y \in O)[\tau'(y) = \tau(y)], \quad \tau'(o) = t \]
 \[(\forall x \in S')[a'[x, o] = \emptyset] \]
 \[(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]] \]
Definitions

• MTAM Model: TAM model without delete, destroy
 – MTAM is Monotonic TAM

• \(\alpha(x_1:t_1, \ldots, x_n:t_n) \) create command
 – \(t_i \) child type in \(\alpha \) if any of create subject \(x_i \) of type \(t_i \) or create object \(x_i \) of type \(t_i \) occur in \(\alpha \)
 – \(t_i \) parent type otherwise
Cyclic Creates

\textbf{command} \texttt{havoc}(s_1 : u, s_2 : u, o_1 : v, o_2 : v, o_3 : w, o_4 : w)

\texttt{create subject } s_1 \texttt{ of type } u;
\texttt{create object } o_1 \texttt{ of type } v;
\texttt{create object } o_3 \texttt{ of type } w;
\texttt{enter } r \texttt{ into } a[s_2, s_1];
\texttt{enter } r \texttt{ into } a[s_2, o_2];
\texttt{enter } r \texttt{ into } a[s_2, o_4]

\texttt{end}
Creation Graph

- \(u, v, w \) child types
- \(u, v, w \) also parent types
- Graph: lines from parent types to child types
- This one has cycles
Theorems

- Safety decidable for systems with acyclic MTAM schemes
- Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 - “ternary” means commands have no more than 3 parameters
 - Equivalent in expressive power to MTAM
Key Points

- Safety problem undecidable
- Limiting scope of systems can make problem decidable
- Types critical to safety problem’s analysis
Security Policy

• Policy partitions system states into:
 – Authorized (secure)
 • These are states the system can enter
 – Unauthorized (nonsecure)
 • If the system enters any of these states, it’s a security violation

• Secure system
 – Starts in authorized state
 – Never enters unauthorized state
Confidentiality

- X set of entities, I information
- I has *confidentiality* property with respect to X if no $x \in X$ can obtain information from I
- I can be disclosed to others
- Example:
 - X set of students
 - I final exam answer key
 - I is confidential with respect to X if students cannot obtain final exam answer key
Integrity

- X set of entities, I information
- I has *integrity* property with respect to X if all $x \in X$ trust information in I
- Types of integrity:
 - trust I, its conveyance and protection (data integrity)
 - I information about origin of something or an identity (origin integrity, authentication)
 - I resource: means resource functions as it should (assurance)
Availability

- X set of entities, I resource
- I has *availability* property with respect to X if all $x \in X$ can access I
- Types of availability:
 - traditional: x gets access or not
 - quality of service: promised a level of access (for example, a specific level of bandwidth) and not meet it, even though some access is achieved
Policy Models

• Abstract description of a policy or class of policies
• Focus on points of interest in policies
 – Security levels in multilevel security models
 – Separation of duty in Clark-Wilson model
 – Conflict of interest in Chinese Wall model
Types of Security Policies

• Military (governmental) security policy
 – Policy primarily protecting confidentiality
• Commercial security policy
 – Policy primarily protecting integrity
• Confidentiality policy
 – Policy protecting only confidentiality
• Integrity policy
 – Policy protecting only integrity
Integrity and Transactions

- Begin in consistent state
 - “Consistent” defined by specification
- Perform series of actions (*transaction*)
 - Actions cannot be interrupted
 - If actions complete, system in consistent state
 - If actions do not complete, system reverts to beginning (consistent) state
Trust

Administrator installs patch

1. Trusts patch came from vendor, not tampered with in transit
2. Trusts vendor tested patch thoroughly
3. Trusts vendor’s test environment corresponds to local environment
4. Trusts patch is installed correctly
Trust in Formal Verification

• Gives formal mathematical proof that given input i, program P produces output o as specified

• Suppose a security-related program S formally verified to work with operating system O

• What are the assumptions?
Trust in Formal Methods

1. Proof has no errors
 • Bugs in automated theorem provers

2. Preconditions hold in environment in which S is to be used

3. S transformed into executable S' whose actions follow source code
 – Compiler bugs, linker/loader/library problems

4. Hardware executes S' as intended
 – Hardware bugs (Pentium f00f bug, for example)
Types of Access Control

- **Discretionary Access Control (DAC, IBAC)**
 - individual user sets access control mechanism to allow or deny access to an object

- **Mandatory Access Control (MAC)**
 - system mechanism controls access to object, and individual cannot alter that access

- **Originator Controlled Access Control (ORCON)**
 - originator (creator) of information controls who can access information