Formal Model Definitions

- S subjects, O objects, P rights
 - Defined rights: r read, a write, w read/write, e empty
- M set of possible access control matrices
- C set of clearances/classifications, K set of categories, $L = C \times K$ set of security levels
- $F = \{ (f_s, f_o, f_c) \}$
 - $f_s(s)$ maximum security level of subject s
 - $f_c(s)$ current security level of subject s
 - $f_o(o)$ security level of object o
More Definitions

- Hierarchy functions $H: O \rightarrow P(O)$
- Requirements
 1. $o_i \neq o_j \Rightarrow h(o_i) \cap h(o_j) = \emptyset$
 2. There is no set $\{o_1, \ldots, o_k\} \subseteq O$ such that, for $i = 1, \ldots, k$, $o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.
- Example
 - Tree hierarchy; take $h(o)$ to be the set of children of o
 - No two objects have any common children (#1)
 - There are no loops in the tree (#2)
States and Requests

• V set of states
 – Each state is (b, m, f, h)
 • b is like m, but excludes rights not allowed by f

• R set of requests for access

• D set of outcomes
 – y allowed, n not allowed, i illegal, o error

• W set of actions of the system
 – $W \subseteq R \times D \times V \times V$
History

- $X = R^N$ set of sequences of requests
- $Y = D^N$ set of sequences of decisions
- $Z = V^N$ set of sequences of states
- Interpretation
 - At time $t \in N$, system is in state $z_{t-1} \in V$; request $x_t \in R$ causes system to make decision $y_t \in D$, transitioning the system into a (possibly new) state $z_t \in V$
- System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$
 - $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all t
 - (x, y, z) called an appearance of $\Sigma(R, D, W, z_0)$
Example

- \(S = \{ s \} \), \(O = \{ o \} \), \(P = \{ r, w \} \)
- \(C = \{ \text{High, Low} \} \), \(K = \{ \text{All} \} \)
- For every \(f \in F \), either \(f_c(s) = (\text{High}, \{ \text{All} \}) \) or \(f_c(s) = (\text{Low}, \{ \text{All} \}) \)
- Initial State:
 - \(b_1 = \{ (s, o, r) \} \), \(m_1 \in M \) gives \(s \) read access over \(o \), and for \(f_1 \in F \), \(f_{c,1}(s) = (\text{High, All}) \), \(f_{o,1}(o) = (\text{Low, All}) \)
 - Call this state \(v_0 = (b_1, m_1, f_1, h_1) \in V \).
First Transition

• Now suppose in state v_0: $S = \{ s, s' \}$
• Suppose $f_{c,1}(s') = (\text{Low}, \{\text{All}\})$
• $m_1 \in M$ gives s and s' read access over o
• As s' not written to o, $b_1 = \{ (s, o, r) \}$
• $z_0 = v_0$; if s' requests r_1 to write to o:
 – System decides $d_1 = y$
 – New state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 – $b_2 = \{ (s, o, r), (s', o, w) \}$
 – Here, $x = (r_1), y = (y), z = (v_0, v_1)$
Second Transition

- Current state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, r), (s', o, w) \}$
 - $f_{c,1}(s) = \text{(High, \{All\}), } f_{o,1}(o) = \text{(Low, \{All\})}$
- s' requests r_2 to write to o:
 - System decides $d_2 = n$ (as $f_{c,1}(s) \text{ dom } f_{o,1}(o)$)
 - New state $v_2 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, r), (s', o, w) \}$
 - So, $x = (r_1, r_2)$, $y = (v, n)$, $z = (v_0, v_1, v_2)$, where $v_2 = v_1$
Basic Security Theorem

- Define action, secure formally
 - Using a bit of foreshadowing for “secure”
- Restate properties formally
 - Simple security condition
 - *-property
 - Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem
Action

• A request and decision that causes the system to move from one state to another
 – Final state may be the same as initial state
• \((r, d, v, v') \in R \times D \times V \times V\) is an action of \(\Sigma(R, D, W, z_0)\) iff there is an \((x, y, z) \in \Sigma(R, D, W, z_0)\) and a \(t \in N\) such that \((r, d, v, v') = (x_t, y_t, z_t, z_{t-1})\)
 – Request \(r\) made when system in state \(v\); decision \(d\) moves system into (possibly the same) state \(v'\)
 – Correspondence with \((x_t, y_t, z_t, z_{t-1})\) makes states, requests, part of a sequence
Simple Security Condition

- \((s, o, p) \in S \times O \times P\) satisfies the simple security condition relative to \(f\) (written \(ssc \ rel \ f\)) iff one of the following holds:
 1. \(p = e\) or \(p = a\)
 2. \(p = r\) or \(p = w\) and \(f_s(s) \ dom\ f_o(o)\)
- Holds vacuously if rights do not involve reading
- If all elements of \(b\) satisfy \(ssc \ rel \ f\), then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition
Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies
 - Every $(s, o, p) \in b - b'$ satisfies $ssc\ rel\ f$
 - Every $(s, o, p) \in b'$ that does not satisfy $ssc\ rel\ f$ is not in b
- Note: “secure” means z_0 satisfies $ssc\ rel\ f$
- First says every (s, o, p) added satisfies $ssc\ rel\ f$; second says any (s, o, p) in b' that does not satisfy $ssc\ rel\ f$ is deleted
*-Property

- $b(s: p_1, \ldots, p_n)$ set of all objects that s has p_1, \ldots, p_n access to
- State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:
 1. $b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_o(o) \text{ dom} f_c(s)]]$
 2. $b(s: w) \neq \emptyset \Rightarrow [\forall o \in b(s: w) [f_o(o) = f_c(s)]]$
 3. $b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) [f_c(s) \text{ dom} f_o(o)]]$
- Idea: for writing, object dominates subject; for reading, subject dominates object
*-Property

- If all states satisfy simple security condition, system satisfies simple security condition
- If a subset \(S' \) of subjects satisfy *-property, then *-property satisfied relative to \(S' \subseteq S \)
- Note: tempting to conclude that *-property includes simple security condition, but this is false
 - See condition placed on \(w \) right for each
Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies the following for every $s \in S'$
 - Every $(s, o, p) \in b - b'$ satisfies the *-property relative to S'
 - Every $(s, o, p) \in b'$ that does not satisfy the *-property relative to S' is not in b

- Note: “secure” means z_0 satisfies *-property relative to S'

- First says every (s, o, p) added satisfies the *-property relative to S'; second says any (s, o, p) in b' that does not satisfy the *-property relative to S' is deleted
Discretionary Security Property

- State \((b, m, f, h)\) satisfies the discretionary security property iff, for each \((s, o, p) \in b\), then \(p \in m[s, o]\).
- Idea: if \(s\) can read \(o\), then it must have rights to do so in the access control matrix \(m\).
- This is the discretionary access control part of the model.
 - The other two properties are the mandatory access control parts of the model.
Necessary and Sufficient

- \(\Sigma(R, D, W, z_0) \) satisfies the ds-property for any secure state \(z_0 \) iff, for every action \((r, d, (b, m, f, h), (b', m', f', h')) \), \(W \) satisfies:
 - Every \((s, o, p) \in b - b' \) satisfies the ds-property
 - Every \((s, o, p) \in b' \) that does not satisfy the ds-property is not in \(b \)
- Note: “secure” means \(z_0 \) satisfies ds-property
- First says every \((s, o, p) \) added satisfies the ds-property;
 second says any \((s, o, p) \) in \(b' \) that does not satisfy the *-property is deleted
Secure

- A system is secure iff it satisfies:
 - Simple security condition
 - *-property
 - Discretionary security property
- A state meeting these three properties is also said to be secure
Basic Security Theorem

• $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and W satisfies the conditions for the preceding three theorems
 – The theorems are on the slides titled “Necessary and Sufficient”
Rule

- \(\rho: R \times V \rightarrow D \times V \)
- Takes a state and a request, returns a decision and a (possibly new) state
- Rule \(\rho \) \textit{ssc-preserving} if for all \((r, v) \in R \times V \) and \(v \) satisfying \(ssc \ rel f \), \(\rho(r, v) = (d, v') \) means that \(v' \) satisfies \(ssc \ rel f' \).
 - Similar definitions for \(*\)-property, \(ds\)-property
 - If rule meets all 3 conditions, it is \textit{security-preserving}
Unambiguous Rule Selection

- Problem: multiple rules may apply to a request in a state
 - if two rules act on a read request in state v …
- Solution: define relation $W(\omega)$ for a set of rules $\omega = \{ \rho_1, \ldots, \rho_m \}$ such that a state $(r, d, v, v') \in W(\omega)$ iff either
 - $d = i$; or
 - for exactly one integer j, $\rho_j(r, v) = (d, v')$
- Either request is illegal, or only one rule applies
Rules Preserving SSC

- Let \(\omega \) be set of ssc-preserving rules. Let state \(z_0 \) satisfy simple security condition. Then \(\Sigma(R, D, W(\omega), z_0) \) satisfies simple security condition
 - Proof: by contradiction.
 - Choose \((x, y, z) \in \Sigma(R, D, W(\omega), z_0) \) as state not satisfying simple security condition; then choose \(t \in N \) such that \((x_t, y_t, z_t) \) is first appearance not meeting simple security condition
 - As \((x_t, y_t, z_t, z_{t-1}) \in W(\omega) \), there is unique rule \(\rho \in \omega \) such that \(\rho(x_t, z_{t-1}) = (y_t, z_t) \) and \(y_t \neq i \).
 - As \(\rho \) ssc-preserving, and \(z_{t-1} \) satisfies simple security condition, then \(z_t \) meets simple security condition, contradiction.
Adding States Preserving SSC

- Let \(v = (b, m, f, h) \) satisfy simple security condition. Let \((s, o, p) \notin b \), \(b' = b \cup \{(s, o, p)\} \), and \(v' = (b', m, f, h) \). Then \(v' \) satisfies simple security condition iff:
 1. Either \(p = \epsilon \) or \(p = a \); or
 2. Either \(p = r \) or \(p = w \), and \(f_c(s) \text{ dom } f_o(o) \)

Proof

1. Immediate from definition of simple security condition and \(v' \) satisfying \(ssc \text{ rel } f \)
2. \(v' \) satisfies simple security condition means \(f_c(s) \text{ dom } f_o(o) \), and for converse, \((s, o, p) \in b' \) satisfies \(ssc \text{ rel } f \), so \(v' \) satisfies simple security condition
Rules, States Preserving *-Property

• Let \(\omega \) be set of *-property-preserving rules, state \(z_0 \) satisfies *-property. Then \(\Sigma(R, D, W(\omega), z_0) \) satisfies *-property.

• Let \(v = (b, m, f, h) \) satisfy *-property. Let \((s, o, p) \notin b, b' = b \cup \{(s, o, p)\} \), and \(v' = (b', m, f, h) \). Then \(v' \) satisfies *-property iff one of the following holds:
 1. \(p = e \) or \(p = a \)
 2. \(p = r \) or \(p = w \) and \(f_c(s) \) dom \(f_o(o) \)
Rules, States Preserving ds-Property

- Let ω be set of ds-property-preserving rules, state z_0 satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property.

- Let $v = (b, m, f, h)$ satisfy ds-property. Let $(s, o, p) \not\in b, b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then v' satisfies ds-property iff $p \in m[s, o]$.
Combining

Let \(\rho \) be a rule and \(\rho(r, v) = (d, v') \), where \(v = (b, m, f, h) \) and \(v' = (b', m', f', h') \). Then:

1. If \(b' \subseteq b, f' = f \), and \(v \) satisfies the simple security condition, then \(v' \) satisfies the simple security condition.

2. If \(b' \subseteq b, f' = f \), and \(v \) satisfies the *-property, then \(v' \) satisfies the *-property.

3. If \(b' \subseteq b, m[s, o] \subseteq m'[s, o] \) for all \(s \in S \) and \(o \in O \), and \(v \) satisfies the ds-property, then \(v' \) satisfies the ds-property.
Proof

1. Suppose v satisfies simple security property.
 a) $b' \subseteq b$ and $(s, o, r) \in b'$ implies $(s, o, r) \in b$
 b) $b' \subseteq b$ and $(s, o, w) \in b'$ implies $(s, o, w) \in b$
 c) So $f_c(s) \text{ dom } f(o)$
 d) But $f' = f$
 e) Hence $f'_c(s) \text{ dom } f'(o)$
 f) So v' satisfies simple security condition

2, 3 proved similarly
Example Instantiation: Multics

• 11 rules affect rights:
 – set to request, release access
 – set to give, remove access to different subject
 – set to create, reclassify objects
 – set to remove objects
 – set to change subject security level

• Set of “trusted” subjects $S_T \subseteq S$
 – *-property not enforced; subjects trusted not to violate

• $\Delta(\rho)$ domain
 – determines if components of request are valid
get-read Rule

- Request $r = (\text{get}, s, o, r)$
 - s gets (requests) the right to read o
- Rule is $\rho_1(r, v)$:

  ```
  \begin{align*}
  \text{if} \ (r \neq \Delta(\rho_1)) \ \text{then} \ &\rho_1(r, v) = (i, v); \\
  \text{else if} \ (f_s(s) \text{ dom } f_o(o) \ \text{and} \ [s \in S_T \ \text{or} \ f_c(s) \text{ dom } f_o(o)] \\
  \text{and} \ r \in m[s, o]) \ \text{and} \ r \in m[s, o])
  \ &\text{then} \ \rho_1(r, v) = (y, (b \cup \{(s, o, r)\}, m, f, h)); \\
  \text{else} \ &\rho_1(r, v) = (n, v);
  \end{align*}
  ```