Example English Policy

• Computer security policy for academic institution
 – Institution has multiple campuses, administered from central office
 – Each campus has its own administration, and unique aspects and needs

• Deals with electronic communications
 – Policy
 – User Advisories
 – Implementation at University of California Davis
Background

• University of California
 – 10 campuses (including UC Davis), each run by a Chancellor
 – UC Office of the President (UCOP) runs system, and is run by President of University of California

• UCOP issues policies that apply to all campuses

• Campuses implement the policy in a manner consistent with directions from UCOP
Electronic Communications Policy

• Begins with purpose, to whom policy applies
 – Includes email, video, voice, other means
 – Not to printed copies of communications
 – Not to Dept. of Energy labs that UC manages, or to Dept. of Energy employees

• Gives general implementation guidelines
Use of Electronic Communications

• University does *not* want to deal with contents of these!
 – But all communications relating to University administration are public records
 – Others may be too

• Allowable users
 – Faculty, staff, students, others associated with UC
 – Others authorized by the Chancellors or UCOP
 – Others participating in programs UC sponsors
Allowable Uses

• University business
 – Classes, research, *etc.*

• Incidental personal use OK
 – But can’t interfere with other uses

• Anonymous communications OK
 – But can’t use a false identity
Non-Allowable Uses

• Endorsements not OK
• Running personal businesses not OJK
• Illegal activities not OK
 – Must respect intellectual property laws, US DMCA
• Violating University of campus policies or rules not OK
• Users can’t put “excessive strain” on resources
 – No spamming, DoD or DDoS attacks
Privacy, Confidentiality

• General rule: respected the same way as is for paper
• Cannot read or disclose without permission of holder, except in specific circumstances
• To do so requires written permission of:
 – A designated Vice Chancellor (campus)
 – A Senior Vice President, Business and Finance (UCOP)
Privacy, Confidentiality

- Written permission not required for:
 - Subpoena or search warrant
 - Emergency
 - But must obtain approval as soon as possible afterwards
 - In all these cases, must notify those affected by the disclosure that the disclosure occurred, and why
Limits of Privacy

• Electronic communications that are public records will not be confidential

• Electronic communications may be on backups

• Electronic communications may be seen during routine system monitoring, etc.
 – Admins instructed to respect privacy, but will report “improper governmental activity”
Security Services, Practices

- Routine monitoring
- Need for authentication
- Need for authorization
- Need for recovery mechanisms
- Need for audit mechanisms
- Other mechanisms to enforce University policy
User Advisories

• These are less formal, give guidelines for the use of electronic communications
 – Show courtesy and consideration as in non-electronic communications
 – Laws about privacy in electronic communications are not as mature as laws about privacy in other areas
 – University provides neither encryption nor authentication
 • Easy to falsify sender
UC Davis Implementation

• Acceptable Use Policy
 – Incorporates the UCD Principles of Community
 – Requires respect of rights of others when using electronic communications
 – Use encouraged for education, university business, university-related activities
UC Davis Implementation

• UC Davis specific details
 – Only Chancellor-approved charitable activities may use these resources
 – Cannot be used to create hostile environment
 • This includes violating obscenity laws
 – Incidental personal use OK under conditions given in Electronic Communications Policy
UC Davis Implementation

- Unacceptable conduct
 - Not protecting passwords for University resources
 - Not respecting copyrights, licenses
 - Violating integrity of these resources
 - Creating malicious logic (worms, viruses, etc.)
 - Allowed if done as part of an academic research or instruction program supervised by academic personnel; and
 - It does not compromise the University’s electric communication resource
UC Davis Implementation

• Allowed users
 – UCD students, staff, faculty
 – Other UCD academic appointees and affiliated people
 • Such as postdocs and visiting scholars

• People leaving
 – Forwarding email allowed
 – Recipient must agree to return to the University any email about University business
Exceptions Allowing Disclosure

- Required by law;
- Reliable evidence of violation of law, University policies;
- Failure to do so may result in:
 - Significant harm
 - Loss of significant evidence of violations;
 - Significant liability to UC or its community;
- Not doing so hampers University meeting administrative, teaching obligations
Confidentiality Policy

• Goal: prevent the unauthorized disclosure of information
 – Deals with information flow
 – Integrity incidental

• Multi-level security models are best-known examples
 – Bell-LaPadula Model basis for many, or most, of these
Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest

- Levels consist of *security clearance* $L(s)$
 - Objects have *security classification* $L(o)$
Example

<table>
<thead>
<tr>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Secret</td>
<td>Tamara</td>
<td>Personnel Files</td>
</tr>
<tr>
<td>Secret</td>
<td>Samuel</td>
<td>E-Mail Files</td>
</tr>
<tr>
<td>Confidential</td>
<td>Claire</td>
<td>Activity Logs</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Ulaleyl</td>
<td>Telephone Lists</td>
</tr>
</tbody>
</table>

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulalely can only read Telephone Lists
Reading Information

• Information flows *up*, not *down*
 – “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 1)
 – Subject s can read object o iff $L(o) \leq L(s)$ and s has permission to read o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 – Sometimes called *no reads up rule*
Writing Information

- Information flows up, not down
 - “Writes up” allowed, “writes down” disallowed
- *-Property (Step 1)
 - Subject s can write object o iff $L(s) \leq L(o)$ and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called *no writes down rule*
Basic Security Theorem, Step 1

• If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *-property, step 1, then every state of the system is secure
 – Proof: induct on the number of transitions
Bell-LaPadula Model, Step 2

• Expand notion of security level to include categories

• Security level is \((\text{clearance}, \text{category set})\)

• Examples
 – (Top Secret, \{NUC, EUR, ASI\})
 – (Confidential, \{EUR, ASI\})
 – (Secret, \{NUC, ASI\})
Levels and Lattices

- \((A, C) \text{ dom } (A', C') \iff A' \leq A \text{ and } C' \subseteq C\)

- **Examples**
 - (Top Secret, \{NUC, ASI\}) dom (Secret, \{NUC\})
 - (Secret, \{NUC, EUR\}) dom (Confidential, \{NUC, EUR\})
 - (Top Secret, \{NUC\}) \neg \text{dom} (Confidential, \{EUR\})

- Let \(C\) be set of classifications, \(K\) set of categories. Set of security levels \(L = C \times K\), dom form lattice
 - \(\text{lub}(L) = (\max(A), C)\)
 - \(\text{glb}(L) = (\min(A), \emptyset)\)
Levels and Ordering

• Security levels partially ordered
 – Any pair of security levels may (or may not) be related by dom

• “dominates” serves the role of “greater than” in step 1
 – “greater than” is a total ordering, though
Reading Information

- Information flows *up*, not *down*
 - “Reads up” disallowed, “reads down” allowed

- Simple Security Condition (Step 2)
 - Subject s can read object o iff $L(s) \text{ dom } L(o)$
 and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Again, sometimes called *no reads up rule*
Writing Information

• Information flows up, not down
 – “Writes up” allowed, “writes down” disallowed

• *-Property (Step 2)
 – Subject s can write object o iff $L(o) \text{ dom } L(s)$ and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 – Again, sometimes called no writes down rule
Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
 - Proof: induct on the number of transitions
 - In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.
Problem

- Colonel has (Secret, \{NUC, EUR\}) clearance
- Major has (Secret, \{EUR\}) clearance
 - Major can talk to colonel (“write up” or “read down”)
 - Colonel cannot talk to major (“read up” or “write down”)
- Clearly absurd!
Solution

• Define maximum, current levels for subjects
 – $\text{maxlevel}(s) \text{ dom curlevel}(s)$

• Example
 – Treat Major as an object (Colonel is writing to him/her)
 – Colonel has maxlevel (Secret, \{ NUC, EUR \})
 – Colonel sets curlevel to (Secret, \{ EUR \})
 – Now $L(\text{Major}) \text{ dom curlevel}(\text{Colonel})$
 • Colonel can write to Major without violating “no writes down”
 – Does $L(s)$ mean $\text{curlevel}(s)$ or $\text{maxlevel}(s)$?
 • Formally, we need a more precise notation
Principle of Tranquility

• Raising object’s security level
 – Information once available to some subjects is no longer available
 – Usually assume information has already been accessed, so this does nothing

• Lowering object’s security level
 – The \textit{declassification problem}
 – Essentially, a “write down” violating \textit{*}-property
 – Solution: define set of trusted subjects that \textit{sanitize} or remove sensitive information before security level lowered
Types of Tranquility

• **Strong Tranquility**
 – The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system

• **Weak Tranquility**
 – The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system
Declassification Principles

• Semantic consistency
 – As long as semantics of parts of system not involved in declassification do not change, they can be altered without affecting security of system

• Occlusion
 – Declassification operation cannot conceal improper lowering of security levels
 – Robust declassification property says attacker cannot use declassification channels to obtain information not properly declassified
Declassification Principles

• Conservativity
 – Absent any declassification, system is secure

• Monotonicity of release
 – When declassification done in an authorized manner by authorized subjects, system remains secure
Integrity Models

• Requirements
 – Very different than confidentiality policies
• Biba’s model: Strict Integrity Policy
• Clark-Wilson model
Requirements of Policies

1. Users will not write their own programs, but will use existing production programs and databases.

2. Programmers will develop and test programs on a non-production system; if they need access to actual data, they will be given production data via a special process, but will use it on their development system.

3. A special process must be followed to install a program from the development system onto the production system.

4. The special process in requirement 3 must be controlled and audited.

5. The managers and auditors must have access to both the system state and the system logs that are generated.