
Lecture for February 19, 2016

ECS 235A
UC Davis

Matt Bishop

February 19, 2016 ECS 235A, Matt Bishop Slide #1

Presentations for Monday,
February 22

•  Francesco Capponi:
– Questioner: Calvin Li
“Securing the Software-Defined Network Control
Layer”

•  Chaitrali Joshi:
– Questioner: Sandeep Rasoori
“Addressing the Challenge of IP Spoofing”

February 19, 2016 ECS 235A, Matt Bishop Slide #2

Presentations for Wednesday,
February 24

•  Mark Crompton:
– Questioner: Yuan-Yu Chen
“A Diagnosis-Based Intrusion Detection
Approach”

•  Apoorva Rangaraju:
– Questioner: Francesco Capponi
“Reinforcement Learning Algorithms for
Adaptive Cyber Defense Against Heartbleed”

February 19, 2016 ECS 235A, Matt Bishop Slide #3

Execution-Based Mechanisms

•  Detect and stop flows of information that violate
policy
–  Done at run time, not compile time

•  Obvious approach: check explicit flows
–  Problem: assume for security, x ≤ y

if x = 1 then y := a;
–  When x ≠ 1, x = High, y = Low, a = Low, appears okay

—but implicit flow violates condition!

February 19, 2016 ECS 235A, Matt Bishop Slide #4

Fenton’s Data Mark Machine

•  Each variable has an associated class
•  Program counter (PC) has one too
•  Idea: branches are assignments to PC, so

you can treat implicit flows as explicit flows
•  Stack-based machine, so everything done in

terms of pushing onto and popping from a
program stack

February 19, 2016 ECS 235A, Matt Bishop Slide #5

Instruction Description

•  skip means instruction not executed
•  push(x, x) means push variable x and its

security class x onto program stack
•  pop(x, x) means pop top value and security

class from program stack, assign them to
variable x and its security class x
respectively

February 19, 2016 ECS 235A, Matt Bishop Slide #6

Instructions
•  x := x + 1 (increment)

–  Same as:
if PC ≤ x then x := x + 1 else skip

•  if x = 0 then goto n else x := x – 1 (branch
and save PC on stack)
–  Same as:
if x = 0 then begin
push(PC, PC); PC := lub{PC, x}; PC := n;

 end else if PC ≤ x then
x := x - 1

else
skip;

February 19, 2016 ECS 235A, Matt Bishop Slide #7

More Instructions
•  if’ x = 0 then goto n else x := x – 1

(branch without saving PC on stack)
–  Same as:
if x = 0 then
if x ≤ PC then PC := n else skip
else
if PC ≤ x then x := x - 1 else skip

February 19, 2016 ECS 235A, Matt Bishop Slide #8

More Instructions

•  return (go to just after last if)
–  Same as:
pop(PC, PC);

•  halt (stop)
–  Same as:
if program stack empty then halt

–  Note stack empty to prevent user obtaining information
from it after halting

February 19, 2016 ECS 235A, Matt Bishop Slide #9

Example Program
1  if x = 0 then goto 4 else x := x - 1
2  if z = 0 then goto 6 else z := z - 1
3  halt
4  z := z - 1
5  return
6  y := y - 1
7  return
•  Initially x = 0 or x = 1, y = 0, z = 0
•  Program copies value of x to y

February 19, 2016 ECS 235A, Matt Bishop Slide #10

Example Execution
x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low)
0 1 0 7 z (3, Low) PC ≤ y
0 1 0 3 Low —

February 19, 2016 ECS 235A, Matt Bishop Slide #11

Handling Errors

•  Ignore statement that causes error, but
continue execution
–  If aborted or a visible exception taken, user

could deduce information
– Means errors cannot be reported unless user has

clearance at least equal to that of the
information causing the error

February 19, 2016 ECS 235A, Matt Bishop Slide #12

Variable Classes

•  Up to now, classes fixed
– Check relationships on assignment, etc.

•  Consider variable classes
– Fenton’s Data Mark Machine does this for PC
– On assignment of form y := f(x1, …, xn), y

changed to lub{ x1, …, xn }
– Need to consider implicit flows, also

February 19, 2016 ECS 235A, Matt Bishop Slide #13

Example Program
(* Copy value from x to y
 * Initially, x is 0 or 1 *)
proc copy(x: int class { x };

var y: int class { y })
var z: int class variable { Low };
begin

y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;

•  z changes when z assigned to
•  Assume y < x
February 19, 2016 ECS 235A, Matt Bishop Slide #14

Analysis of Example
•  x = 0

–  z := 0 sets z to Low
–  if x = 0 then z := 1 sets z to 1 and z to x
–  So on exit, y = 0

•  x = 1
–  z := 0 sets z to Low
–  if z = 0 then y := 1 sets y to 1 and checks that

lub{Low, z} ≤ y
–  So on exit, y = 1

•  Information flowed from x to y even though y < x
February 19, 2016 ECS 235A, Matt Bishop Slide #15

Handling This (1)

•  Fenton’s Data Mark Machine detects
implicit flows violating certification rules

February 19, 2016 ECS 235A, Matt Bishop Slide #16

Handling This (2)

•  Raise class of variables assigned to in conditionals
even when branch not taken

•  Also, verify information flow requirements even
when branch not taken

•  Example:
–  In if x = 0 then z := 1, z raised to x whether or not

x = 0
–  Certification check in next statement, that z ≤ y, fails, as

z = x from previous statement, and y ≤ x

February 19, 2016 ECS 235A, Matt Bishop Slide #17

Handling This (3)

•  Change classes only when explicit flows occur,
but all flows (implicit as well as explicit) force
certification checks

•  Example
–  When x = 0, first “if” sets z to Low then checks x ≤ z
–  When x = 1, first “if” checks that x ≤ z
–  This holds if and only if x = Low

•  Not possible as y < x = Low and there is no such class

February 19, 2016 ECS 235A, Matt Bishop Slide #18

The Confinement Problem

•  What is the problem?
•  Isolation: virtual machines, sandboxes
•  Detecting covert channels
•  Analyzing covert channels
•  Mitigating covert channels

February 19, 2016 ECS 235A, Matt Bishop Slide #19

Overview

•  The confinement problem
•  Isolating entities

– Virtual machines
– Sandboxes

•  Covert channels
– Detecting them
– Analyzing them
– Mitigating them

February 19, 2016 ECS 235A, Matt Bishop Slide #20

Example Problem

•  Server balances bank accounts for clients
•  Server security issues:

– Record correctly who used it
– Send only balancing info to client

•  Client security issues:
– Log use correctly
– Do not save or retransmit data client sends

February 19, 2016 ECS 235A, Matt Bishop Slide #21

Generalization

•  Client sends request, data to server
•  Server performs some function on data
•  Server returns result to client
•  Access controls:

–  Server must ensure the resources it accesses on behalf
of client include only resources client is authorized to
access

–  Server must ensure it does not reveal client’s data to
any entity not authorized to see the client’s data

February 19, 2016 ECS 235A, Matt Bishop Slide #22

Confinement Problem

•  Problem of preventing a server from leaking
information that the user of the service
considers confidential

February 19, 2016 ECS 235A, Matt Bishop Slide #23

Total Isolation

•  Process cannot communicate with any other
process

•  Process cannot be observed

Impossible for this process to leak information
– Not practical as process uses observable

resources such as CPU, secondary storage,
networks, etc.

February 19, 2016 ECS 235A, Matt Bishop Slide #24

Example
•  Processes p, q not allowed to communicate

–  But they share a file system!
•  Communications protocol:

–  p sends a bit by creating a file called 0 or 1, then a
second file called send

•  p waits until send is deleted before repeating to send another
bit

–  q waits until file send exists, then looks for file 0 or 1;
whichever exists is the bit

•  q then deletes 0, 1, and send and waits until send is recreated
before repeating to read another bit

February 19, 2016 ECS 235A, Matt Bishop Slide #25

Covert Channel

•  A path of communication not designed to be
used for communication

•  In example, file system is a (storage) covert
channel

February 19, 2016 ECS 235A, Matt Bishop Slide #26

Rule of Transitive Confinement

•  If p is confined to prevent leaking, and it
invokes q, then q must be similarly confined
to prevent leaking

•  Rule: if a confined process invokes a second
process, the second process must be as
confined as the first

February 19, 2016 ECS 235A, Matt Bishop Slide #27

Lipner’s Notes

•  All processes can obtain rough idea of time
– Read system clock or wall clock time
– Determine number of instructions executed

•  All processes can manipulate time
– Wait some interval of wall clock time
– Execute a set number of instructions, then

block

February 19, 2016 ECS 235A, Matt Bishop Slide #28

Kocher’s Attack
•  This computes x = az mod n, where z = z0 … zk–1

x := 1; atmp := a;
for i := 0 to k–1 do begin
if zi = 1 then

x := (x * atmp) mod n;
atmp := (atmp * atmp) mod n;

end
result := x;

•  Length of run time related to number of 1 bits in z
February 19, 2016 ECS 235A, Matt Bishop Slide #29

Isolation
•  Present process with environment that appears to

be a computer running only those processes being
isolated
–  Process cannot access underlying computer system, any

process(es) or resource(s) not part of that environment
–  A virtual machine

•  Run process in environment that analyzes actions
to determine if they leak information
–  Alters the interface between process(es) and computer

February 19, 2016 ECS 235A, Matt Bishop Slide #30

Virtual Machine

•  Program that simulates hardware of a
machine
– Machine may be an existing, physical one or an

abstract one
•  Why?

– Existing OSes do not need to be modified
•  Run under VMM, which enforces security policy
•  Effectively, VMM is a security kernel

February 19, 2016 ECS 235A, Matt Bishop Slide #31

VMM as Security Kernel

•  VMM deals with subjects (the VMs)
–  Knows nothing about the processes within the VM

•  VMM applies security checks to subjects
–  By transitivity, these controls apply to processes on

VMs
•  Thus, satisfies rule of transitive confinement

February 19, 2016 ECS 235A, Matt Bishop Slide #32

Example 1: KVM/370

•  KVM/370 is security-enhanced version of
VM/370 VMM
– Goal: prevent communications between VMs of

different security classes
– Like VM/370, provides VMs with minidisks,

sharing some portions of those disks
– Unlike VM/370, mediates access to shared

areas to limit communication in accordance
with security policy

February 19, 2016 ECS 235A, Matt Bishop Slide #33

Example 2: VAX/VMM

•  Can run either VMS or Ultrix
•  4 privilege levels for VM system

– VM user, VM supervisor, VM executive, VM
kernel (both physical executive)

•  VMM runs in physical kernel mode
– Only it can access certain resources

•  VMM subjects: users and VMs

February 19, 2016 ECS 235A, Matt Bishop Slide #34

Example 2

•  VMM has flat file system for itself
– Rest of disk partitioned among VMs
– VMs can use any file system structure

•  Each VM has its own set of file systems
– Subjects, objects have security, integrity classes

•  Called access classes
– VMM has sophisticated auditing mechanism

February 19, 2016 ECS 235A, Matt Bishop Slide #35

Problem

•  Physical resources shared
– System CPU, disks, etc.

•  May share logical resources
– Depends on how system is implemented

•  Allows covert channels

February 19, 2016 ECS 235A, Matt Bishop Slide #36

Sandboxes

•  An environment in which actions are
restricted in accordance with security policy
– Limit execution environment as needed

•  Program not modified
•  Libraries, kernel modified to restrict actions

– Modify program to check, restrict actions
•  Like dynamic debuggers, profilers

February 19, 2016 ECS 235A, Matt Bishop Slide #37

Examples Limiting Environment
•  Java virtual machine

–  Security manager limits access of downloaded
programs as policy dictates

•  Sidewinder firewall
–  Type enforcement limits access
–  Policy fixed in kernel by vendor

•  Domain Type Enforcement
–  Enforcement mechanism for DTEL
–  Kernel enforces sandbox defined by system

administrator
February 19, 2016 ECS 235A, Matt Bishop Slide #38

Modifying Programs

•  Add breakpoints or special instructions to
source, binary code
– On trap or execution of special instructions,

analyze state of process
•  Variant: software fault isolation

– Add instructions checking memory accesses,
other security issues

– Any attempt to violate policy causes trap
February 19, 2016 ECS 235A, Matt Bishop Slide #39

Example: Janus

•  Implements sandbox in which system calls
checked
– Framework does runtime checking
– Modules determine which accesses allowed

•  Configuration file
–  Instructs loading of modules
– Also lists constraints

February 19, 2016 ECS 235A, Matt Bishop Slide #40

Configuration File
basic module
basic

define subprocess environment variables
putenv IFS=”\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT

deny access to everything except files under /usr
path deny read,write *
path allow read,write /usr/*
allow subprocess to read files in library directories
needed for dynamic loading
path allow read /lib/* /usr/lib/* /usr/local/lib/*
needed so child can execute programs
path allow read,exec /sbin/* /bin/* /usr/bin/*

February 19, 2016 ECS 235A, Matt Bishop Slide #41

How It Works

•  Framework builds list of relevant system calls
–  Then marks each with allowed, disallowed actions

•  When monitored system call executed
–  Framework checks arguments, validates that call is

allowed for those arguments
•  If not, returns failure
•  Otherwise, give control back to child, so normal system call

proceeds

February 19, 2016 ECS 235A, Matt Bishop Slide #42

Use

•  Reading MIME Mail: fear is user sets mail reader
to display attachment using Postscript engine
–  Has mechanism to execute system-level commands
–  Embed a file deletion command in attachment …

•  Janus configured to disallow execution of any
subcommands by Postscript engine
–  Above attempt fails

February 19, 2016 ECS 235A, Matt Bishop Slide #43

Sandboxes, VMs, and TCB

•  Sandboxes, VMs part of trusted computing
bases
– Failure: less protection than security officers,

users believe
–  “False sense of security”

•  Must ensure confinement mechanism
correctly implements desired security policy

February 19, 2016 ECS 235A, Matt Bishop Slide #44

