Lecture 4

September 29, 2021
Confidentiality Policy

• Goal: prevent the unauthorized disclosure of information
 • Deals with information flow
 • Integrity incidental

• Multi-level security models are best-known examples
 • Bell-LaPadula Model basis for many, or most, of these
Bell-LaPadula Model, Step 1

• Security levels arranged in linear ordering
 • Top Secret: highest
 • Secret
 • Confidential
 • Unclassified: lowest

• Levels consist are called security clearance $L(s)$ for subjects and security classification $L(o)$ for objects
Example

<table>
<thead>
<tr>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Secret</td>
<td>Tamara</td>
<td>Personnel Files</td>
</tr>
<tr>
<td>Secret</td>
<td>Samuel</td>
<td>E-Mail Files</td>
</tr>
<tr>
<td>Confidential</td>
<td>Claire</td>
<td>Activity Logs</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Ulaley</td>
<td>Telephone Lists</td>
</tr>
</tbody>
</table>

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists
Reading Information

• Information flows *up*, not *down*
 • “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 1)
 • Subject s can read object o iff $L(o) \leq L(s)$ and s has permission to read o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 • “Writes up” allowed, “writes down” disallowed

• *-Property (Step 1)
 • Subject s can write object o iff $L(s) \leq L(o)$ and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no writes down” rule
Basic Security Theorem, Step 1

• If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *-property, step 1, then every state of the system is secure
 • Proof: induct on the number of transitions
Lattices

• Lattices used to analyze several models
 • Bell-LaPadula confidentiality model
 • Biba integrity model

• A lattice consists of a set and a relation

• Relation must partially order set
 • Relation orders some, but not all, elements of set
Sets and Relations

- S set, R: $S \times S$ relation
 - If $a, b \in S$, and $(a, b) \in R$, write aRb

- Example
 - $I = \{ 1, 2, 3 \}$; R is \leq
 - $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
 - So we write $1 \leq 2$ and $3 \leq 3$ but not $3 \leq 2$
Relation Properties

• Reflexive
 • For all $a \in S$, aRa
 • On I, \leq is reflexive as $1 \leq 1$, $2 \leq 2$, $3 \leq 3$

• Antisymmetric
 • For all $a, b \in S$, $aRb \land bRa \Rightarrow a = b$
 • On I, \leq is antisymmetric as $1 \leq x$ and $x \leq 1$ means $x = 1$

• Transitive
 • For all $a, b, c \in S$, $aRb \land bRc \Rightarrow aRc$
 • On I, \leq is transitive as $1 \leq 2$ and $2 \leq 3$ means $1 \leq 3$
Example

• \mathbb{C} set of complex numbers
• $a \in \mathbb{C} \Rightarrow a = a_R + a_Ii$, where a_R, a_I integers
• $a \leq_C b$ if, and only if, $a_R \leq b_R$ and $a_I \leq b_I$
• $a \leq_C b$ is reflexive, antisymmetric, transitive
 • As \leq is over integers, and a_R, a_I are integers
Partial Ordering

• Relation R orders some members of set S
 • If all ordered, it’s a total ordering

• Example
 • \leq on integers is total ordering
 • $\leq_{\mathbb{C}}$ is partial ordering on \mathbb{C}
 • Neither $3+5i \leq_{\mathbb{C}} 4+2i$ nor $4+2i \leq_{\mathbb{C}} 3+5i$ holds
Upper Bounds

• For $a, b \in S$, if u in S with aRu, bRu exists, then u is an upper bound
 • A least upper bound if there is no $t \in S$ such that aRt, bRt, and tRu

• Example
 • For $1 + 5i, 2 + 4i \in \mathbb{C}$
 • Some upper bounds are $2 + 5i, 3 + 8i$, and $9 + 100i$
 • Least upper bound is $2 + 5i$
Lower Bounds

• For $a, b \in S$, if l in S with lRa, lRb exists, then l is a lower bound
 • A greatest lower bound if there is no $t \in S$ such that tRa, tRb, and lRt

• Example
 • For $1 + 5i, 2 + 4i \in \mathbb{C}$
 • Some lower bounds are $0, -1 + 2i, 1 + 1i, \text{and } 1+4i$
 • Greatest lower bound is $1 + 4i$
Lattices

• Set S, relation R
 • R is reflexive, antisymmetric, transitive on elements of S
 • For every $s, t \in S$, there exists a greatest lower bound under R
 • For every $s, t \in S$, there exists a least upper bound under R
Example

- $S = \{ 0, 1, 2 \}; \; R = \leq$ is a lattice
 - R is clearly reflexive, antisymmetric, transitive on elements of S
 - Least upper bound of any two elements of S is the greater of the elements
 - Greatest lower bound of any two elements of S is the lesser of the elements
Arrows represent \leq; this forms a total ordering
Example

- \(\mathbb{C}, \leq_\mathbb{C} \) form a lattice
 - \(\leq_\mathbb{C} \) is reflexive, antisymmetric, and transitive
 - Shown earlier
 - Least upper bound for \(a \) and \(b \):
 - \(c_R = \max(a_R, b_R), \ c_i = \max(a_i, b_i) \); then \(c = c_R + c_i \)
 - Greatest lower bound for \(a \) and \(b \):
 - \(c_R = \min(a_R, b_R), \ c_i = \min(a_i, b_i) \); then \(c = c_R + c_i \)
Arrows represent $\leq_{\mathbb{C}}$
Bell-LaPadula Model, Step 2

• Expand notion of security level to include categories
• Security level is \((\text{clearance}, \text{category set}) \)
• Examples
 • \(\text{(Top Secret, \{NUC, EUR, ASI\})} \)
 • \(\text{(Confidential, \{EUR, ASI\})} \)
 • \(\text{(Secret, \{NUC, ASI\})} \)
Levels and Lattices

• \((A, C)\) dom \((A', C')\) iff \(A' \leq A\) and \(C' \subseteq C\)

• Examples
 • (Top Secret, \{NUC, ASI\}) dom (Secret, \{NUC\})
 • (Secret, \{NUC, EUR\}) dom (Confidential, \{NUC, EUR\})
 • (Top Secret, \{NUC\}) \(\neg\) dom (Confidential, \{EUR\})

• Let \(C\) be set of classifications, \(K\) set of categories. Set of security levels \(L = C \times K\), dom form lattice
 • \(lub(L) = (\max(A), C)\)
 • \(glb(L) = (\min(A), \emptyset)\)
Levels and Ordering

• Security levels partially ordered
 • Any pair of security levels may (or may not) be related by dom

• “dominates” serves the role of “greater than” in step 1
 • “greater than” is a total ordering, though
Reading Information

• Information flows *up*, not *down*
 • “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 2)
 • Subject s can read object o iff $L(s)$ dom $L(o)$ and s has permission to read o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 • “Writes up” allowed, “writes down” disallowed

• *-Property (Step 2)
 • Subject \(s \) can write object \(o \) iff \(L(o) \text{ dom } L(s) \) and \(s \) has permission to write \(o \)
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no writes down” rule
Basic Security Theorem, Step 2

• If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
 • Proof: induct on the number of transitions
 • In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.
Problem

• Colonel has (Secret, {NUC, EUR}) clearance
• Major has (Secret, {EUR}) clearance
 • Major can talk to colonel (“write up” or “read down”)
 • Colonel cannot talk to major (“read up” or “write down”)
• Clearly absurd!
Solution

• Define maximum, current levels for subjects
 • \(\text{maxlevel}(s) \text{ dom curlevel}(s)\)

• Example
 • Treat Major as an object (Colonel is writing to him/her)
 • Colonel has \(\text{maxlevel}\) (Secret, \{ NUC, EUR \})
 • Colonel sets \(\text{curlevel}\) to (Secret, \{ EUR \})
 • Now \(L(\text{Major}) \text{ dom curlevel}(\text{Colonel})\)
 • Colonel can write to Major without violating “no writes down”
 • Does \(L(s)\) mean \(\text{curlevel}(s)\) or \(\text{maxlevel}(s)\)?
 • Formally, we need a more precise notation
Example: Trusted Solaris

• Provides mandatory access controls
 • Security level represented by sensitivity label
 • Least upper bound of all sensitivity labels of a subject called clearance
 • Default labels ADMIN_HIGH (dominates any other label) and ADMIN_LOW (dominated by any other label)

• S has controlling user U_S
 • S_L sensitivity label of subject
 • privileged(S, P) true if S can override or bypass part of security policy P
 • asserted (S, P) true if S is doing so
Rules

C_L clearance of S, S_L sensitivity label of S, U_S controlling user of S, and O_L sensitivity label of O

1. If $\neg\text{privileged}(S, \text{"change } S_L\text{"})$, then no sequence of operations can change S_L to a value that it has not previously assumed

2. If $\neg\text{privileged}(S, \text{"change } S_L\text{"})$, then $\neg\text{privileged}(S, \text{"change } S_L\text{"})$

3. If $\neg\text{privileged}(S, \text{"change } S_L\text{"})$, then no value of S_L can be outside the clearance of U_S

4. For all subjects S, named objects O, if $\neg\text{privileged}(S, \text{"change } O_L\text{"})$, then no sequence of operations can change O_L to a value that it has not previously assumed
Rules (con’t)

C_L clearance of S, S_L sensitivity label of S, U_S controlling user of S, and O_L sensitivity label of O

5. For all subjects S, named objects O, if \negprivileged(S, “override O’s mandatory read access control”), then read access to O is granted only if $S_L \text{ dom } O_L$
 • Instantiation of simple security condition

6. For all subjects S, named objects O, if \negprivileged(S, “override O’s mandatory write access control”), then write access to O is granted only if $O_L \text{ dom } S_L$ and $C_L \text{ dom } O_L$
 • Instantiation of *-property
Initial Assignment of Labels

• Each account is assigned a label range \([\text{clearance}, \text{minimum}]\)

• On login, Trusted Solaris determines if the session is single-level
 • If clearance = minimum, single level and session gets that label
 • If not, multi-level; user asked to specify clearance for session; must be in the label range
 • In multi-level session, can change to any label in the range of the session clearance to the minimum
Writing

• Allowed when subject, object labels are the same or file is in downgraded directory D with sensitivity label D_L and all the following hold:
 • $S_L \text{dom } D_L$
 • S has discretionary read, search access to D
 • $O_L \text{dom } S_L$ and $O_L \neq S_L$
 • S has discretionary write access to O
 • $C_L \text{dom } O_L$
• Note: subject cannot read object
Directory Problem

• Process p at MAC_A tries to create file $/tmp/x$
• $/tmp/x$ exists but has MAC label MAC_B
 • Assume MAC_B dom MAC_A
• Create fails
 • Now p knows a file named x with a higher label exists
• Fix: only programs with same MAC label as directory can create files in the directory
 • Now compilation won’t work, mail can’t be delivered
Multilevel Directory

- Directory with a set of subdirectories, one per label
 - Not normally visible to user
 - `p` creating `/tmp/x` actually creates `/tmp/d/x` where `d` is directory corresponding to MAC_A
 - All `p`’s references to `/tmp` go to `/tmp/d`
- `p` cd’s to `/tmp`
 - System call stat(".", &buf) returns information about `/tmp/d`
 - System call mldstat(".", &buf) returns information about `/tmp`
Labeled Zones

- Used in Trusted Solaris Extensions, various flavors of Linux
- **Zone**: virtual environment tied to a unique label
 - Each process can only access objects in its zone
- **Global zone** encompasses everything on system
 - Its label is ADMIN_HIGH
 - Only system administrators can access this zone
- Each zone has a unique root directory
 - All objects within the zone have that zone’s label
 - Each zone has a unique label
More about Zones

• Can import (mount) file systems from other zones provided:
 • If importing read-only, importing zone’s label must dominate imported zone’s label
 • If importing read-write, importing zone’s label must equal imported zone’s label
 • So the zones are the same; import unnecessary
 • Labels checked at time of import

• Objects in imported file system retain their labels
Example

- $L_1 \text{ dom } L_2$
- $L_3 \text{ dom } L_2$
- Process in L_1 can read any file in the export directory of L_2 (assuming discretionary permissions allow it)
- L_1, L_3 disjoint
 - Do not share any files
- System directories imported from global zone, at ADMIN_LOW
 - So can only be read