Symmetric Cryptography

• Sender, receiver share common key
 • Keys may be the same, or trivial to derive from one another
 • Sometimes called *secret key cryptography*

• Two basic types
 • Transposition ciphers
 • Substitution ciphers
 • Combinations are called *product ciphers*
Transposition Cipher

• Rearrange letters in plaintext to produce ciphertext

• Example (Rail-Fence Cipher)
 • Plaintext is HELLO WORLD
 • Rearrange as

 | H | L | O | O | L |
 |---|---|---|---|---|
 | E | L | W | R | D |

 • Ciphertext is HLOOL ELWRD
Attacking the Cipher

• Anagramming
 • If 1-gram frequencies match English frequencies, but other n-gram frequencies do not, probably transposition
 • Rearrange letters to form n-grams with highest frequencies
Example

• Ciphertext: HLOOLELWRD

• Frequencies of 2-grams beginning with H
 • HE 0.0305
 • HO 0.0043
 • HL, HW, HR, HD < 0.0010

• Frequencies of 2-grams ending in H
 • WH 0.0026
 • EH, LH, OH, RH, DH ≤ 0.0002

• Implies E follows H
Example

• Arrange so the H and E are adjacent
 HE
 LL
 OW
 OR
 LD

• Read across, then down, to get original plaintext
Substitution Ciphers

• Change characters in plaintext to produce ciphertext

• Example (Caesar cipher)
 • Plaintext is HELLO WORLD
 • Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 • Key is 3, usually written as letter ‘D’
 • Ciphertext is KHOOR ZRUOG
Attacking the Cipher

• Exhaustive search
 • If the key space is small enough, try all possible keys until you find the right one
 • Caesar cipher has 26 possible keys

• Statistical analysis
 • Compare to 1-gram model of English
Statistical Attack

• Compute frequency of each letter in ciphertext:

 G 0.1 H 0.1 K 0.1 O 0.3
 R 0.2 U 0.1 Z 0.1

• Apply 1-gram model of English
 • Frequency of characters (1-grams) in English is on next slide
Character Frequencies

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Character</th>
<th>Frequency</th>
<th>Character</th>
<th>Frequency</th>
<th>Character</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.07984</td>
<td>h</td>
<td>0.06384</td>
<td>n</td>
<td>0.06876</td>
<td>t</td>
<td>0.09058</td>
</tr>
<tr>
<td>b</td>
<td>0.01511</td>
<td>i</td>
<td>0.07000</td>
<td>o</td>
<td>0.07691</td>
<td>u</td>
<td>0.02844</td>
</tr>
<tr>
<td>c</td>
<td>0.02504</td>
<td>j</td>
<td>0.00131</td>
<td>p</td>
<td>0.01741</td>
<td>v</td>
<td>0.01056</td>
</tr>
<tr>
<td>d</td>
<td>0.04260</td>
<td>k</td>
<td>0.00741</td>
<td>q</td>
<td>0.00107</td>
<td>w</td>
<td>0.02304</td>
</tr>
<tr>
<td>e</td>
<td>0.12452</td>
<td>l</td>
<td>0.03961</td>
<td>r</td>
<td>0.05912</td>
<td>x</td>
<td>0.00159</td>
</tr>
<tr>
<td>f</td>
<td>0.02262</td>
<td>m</td>
<td>0.02629</td>
<td>s</td>
<td>0.06333</td>
<td>y</td>
<td>0.02028</td>
</tr>
<tr>
<td>g</td>
<td>0.02013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z</td>
<td>0.00057</td>
</tr>
</tbody>
</table>
Statistical Analysis

• $f(c)$ frequency of character c in ciphertext
• $\varphi(i)$ correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is i
 • $\varphi(i) = \sum_{0 \leq c \leq 25} f(c)p(c - i)$ so here,
 $\varphi(i) = 0.1 \ p(6 - i) + 0.1 \ p(7 - i) + 0.1 \ p(10 - i) + 0.3 \ p(14 - i) + 0.2 \ p(17 - i) +$
 $0.1 \ p(20 - i) + 0.1 \ p(25 - i)$
 • $p(x)$ is frequency of character x in English
Correlation: $\varphi(i)$ for $0 \leq i \leq 25$

<table>
<thead>
<tr>
<th>i</th>
<th>$\varphi(i)$</th>
<th>i</th>
<th>$\varphi(i)$</th>
<th>i</th>
<th>$\varphi(i)$</th>
<th>i</th>
<th>$\varphi(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0469</td>
<td>7</td>
<td>0.0461</td>
<td>13</td>
<td>0.0505</td>
<td>19</td>
<td>0.0312</td>
</tr>
<tr>
<td>1</td>
<td>0.0393</td>
<td>8</td>
<td>0.0194</td>
<td>14</td>
<td>0.0561</td>
<td>20</td>
<td>0.0287</td>
</tr>
<tr>
<td>2</td>
<td>0.0396</td>
<td>9</td>
<td>0.0286</td>
<td>15</td>
<td>0.0215</td>
<td>21</td>
<td>0.0526</td>
</tr>
<tr>
<td>3</td>
<td>0.0586</td>
<td>10</td>
<td>0.0631</td>
<td>16</td>
<td>0.0306</td>
<td>22</td>
<td>0.0398</td>
</tr>
<tr>
<td>4</td>
<td>0.0259</td>
<td>11</td>
<td>0.0280</td>
<td>17</td>
<td>0.0386</td>
<td>23</td>
<td>0.0338</td>
</tr>
<tr>
<td>5</td>
<td>0.0165</td>
<td>12</td>
<td>0.0318</td>
<td>18</td>
<td>0.0317</td>
<td>24</td>
<td>0.0320</td>
</tr>
<tr>
<td>6</td>
<td>0.0676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
The Result

- Most probable keys, based on φ:
 - $i = 6$, $\varphi(i) = 0.0676$
 - plaintext EBIIL TLOLA
 - $i = 10$, $\varphi(i) = 0.0631$
 - plaintext AXEEH PHKEW
 - $i = 14$, $\varphi(i) = 0.0561$
 - plaintext WTAAD LDGAS
 - $i = 3$, $\varphi(i) = 0.0586$
 - plaintext HELLO WORLD

- Only English phrase is for $i = 3$
 - That’s the key (3 or ‘D’)
Caesar’s Problem

- Key is too short
 - Can be found by exhaustive search
 - Statistical frequencies not concealed well
 - They look too much like regular English letters
- So make it longer
 - Multiple letters in key
 - Idea is to smooth the statistical frequencies to make cryptanalysis harder
Vigènere Cipher

• Like Caesar cipher, but use a phrase
 • So it’s effectively multiple Caesar ciphers

• Example
 • Message A LIMERICK PACKS LAUGHS ANATOMICAL
 • Key BENCH
 • Encipher using Caesar cipher for each letter:
 key BENCHBENCHBENCHBENCHBENCHBENCHBENCH
 plain ALIMERICKPACKSLAUGHSANATOMICAL
 cipher BPVOLSMPMWBGXUSBYTJZBRNVVNVNMPCS
Relevant Parts of Tableau

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>H</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>B</td>
<td>D</td>
<td>E</td>
<td>G</td>
<td>J</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
<td>K</td>
<td>L</td>
<td>N</td>
</tr>
<tr>
<td>H</td>
<td>I</td>
<td>J</td>
<td>L</td>
<td>O</td>
<td>U</td>
</tr>
<tr>
<td>I</td>
<td>J</td>
<td>K</td>
<td>M</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>Q</td>
<td>Y</td>
</tr>
<tr>
<td>M</td>
<td>N</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>Z</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>S</td>
<td>A</td>
</tr>
<tr>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>S</td>
<td>T</td>
<td>B</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>S</td>
<td>T</td>
<td>W</td>
<td>C</td>
</tr>
<tr>
<td>Q</td>
<td>S</td>
<td>T</td>
<td>W</td>
<td>Y</td>
<td>E</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>X</td>
<td>A</td>
</tr>
<tr>
<td>T</td>
<td>U</td>
<td>V</td>
<td>X</td>
<td>Y</td>
<td>B</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td>Y</td>
<td>B</td>
<td>H</td>
</tr>
</tbody>
</table>

- Tableau shown has relevant rows, columns only
 - Columns correspond to letters from the key
 - Rows correspond to letters from the message
- Example encipherments:
 - key B, letter R: follow B column down to R row (giving “S”)
 - Key H, letter L: follow H column down to L row (giving “S”)

October 6, 2021
ECS 235A, Computer and Information Security
Slide 7-16
Useful Terms

- *period*: length of key
 - In earlier example, period is 3

- *tableau*: table used to encipher and decipher
 - Vigènere cipher has key letters on top, plaintext letters on the left

- *polyalphabetic*: the key has several different letters
 - Caesar cipher is monoalphabetic
Attacking the Cipher

• Approach
 • Establish period; call it n
 • Break message into n parts, each part being enciphered using the same key letter
 • Solve each part; you can leverage one part from another

• We will show each step
The Target Cipher

• We want to break this cipher:

 ADQYS MIUSB OXKKT MIBHK IZOOO EQOOG IFBAG KAUMF
 VVTAA CIDTW MOCIO EQOOG BMBFV ZGGWP CIEKQ HSNEW
 VECNE DLAAV RWKXS VNSVP HCEUT QOIOF MEGJS WTPCH
 AJMOC HIUIX
Establish Period

• Kasiski: *repetitions in the ciphertext occur when characters of the key appear over the same characters in the plaintext*

• Example:

 key VIGVIGVIGVIGVIGV
 plain THEBOYHASTHEBALL
 cipher OPKW WECIYOPKWIRG

Note the key and plaintext line up over the repetitions (underlined). As distance between repetitions is 9, the period is a factor of 9 (that is, 1, 3, or 9)
Repetitions in Example

<table>
<thead>
<tr>
<th>Letters</th>
<th>Start</th>
<th>End</th>
<th>Gap Length</th>
<th>Gap Length Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEQOOG</td>
<td>24</td>
<td>54</td>
<td>30</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>MOC</td>
<td>50</td>
<td>122</td>
<td>72</td>
<td>2, 2, 2, 3, 3</td>
</tr>
</tbody>
</table>
Estimate of Period

- OEQOOOG is probably not a coincidence
 - It’s too long for that
 - Period may be 1, 2, 3, 5, 6, 10, 15, or 30
- MOC is also probably not a coincidence
 - Period may be 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, or 72
- Period of 2 or 3 is probably too short (but maybe not)
- Begin with period of 6
Check on Period

• Index of coincidence is probability that two randomly chosen letters from ciphertext will be the same

• Tabulated for different periods:

<table>
<thead>
<tr>
<th>Period</th>
<th>Coincidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0660</td>
</tr>
<tr>
<td>2</td>
<td>0.0520</td>
</tr>
<tr>
<td>3</td>
<td>0.0473</td>
</tr>
<tr>
<td>6</td>
<td>0.0427</td>
</tr>
</tbody>
</table>
Compute IC for an Alphabet

- IC = \[\frac{1}{n(n-1)} \sum_{0 \leq i \leq 25} [F_i(F_i-1)] \]
 - where \(n \) is length of ciphertext and \(F_i \) the number of times character \(i \) occurs in ciphertext
- For the given ciphertext, IC = 0.0433
 - Indicates a key of length 5 or 6
 - A statistical measure, so it can be in error, but it agrees with the previous estimate (which was 6)
Splitting Into Alphabets

alphabet 1: AIKHOIATTOBGEEERNEOSAI
alphabet 2: DUKKEFUAWEMGKWDWSUFWJU
alphabet 3: QSTIQBMAMOBWQVLKVTMTMI
alphabet 4: YBMZOAFCOOPFHEAXPQEP0X
alphabet 5: SOIOOGVICOVCSVASHOGCC
alphabet 6: MXBOGVTDIGZINNVVCJHH

- ICs (#1, 0.0692; #2, 0.0779; #3, 0.0779; #4, 0.0562; #5, 0.1238; #6, 0.0429) indicate all alphabets have period 1, except #4 (between 1 and 2) and #6 (between 5 and 6); assume statistical variance
Frequency Examination

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
1	3	1	0	0	4	0	1	1	3	0	1	0	0	1	3	0	0	1	1	2	0	0	0	0	0	0
2	1	0	0	2	2	2	1	0	0	1	3	0	1	0	0	0	0	0	1	0	4	0	4	0	0	0
3	1	2	0	0	0	0	0	2	0	1	1	4	0	0	4	0	1	3	0	2	1	0	0	0	0	
4	2	1	1	0	2	2	0	1	0	0	0	0	1	0	4	3	1	0	0	0	0	0	0	2	1	1
5	1	0	5	0	0	0	2	1	2	0	0	0	0	5	0	0	0	3	0	0	2	0	0	0	0	
6	0	1	1	1	0	0	2	2	3	1	1	0	1	2	1	0	0	0	0	0	3	0	1	0	1	

H M M M H M M H H M M M M H H M L H H H M L L L L L L L L

The last row has general letter frequencies (H high, M medium, L low)
Begin Decryption

• First matches characteristics of unshifted alphabet
• Third matches if I shifted to A
• Sixth matches if V shifted to A
• Substitute into ciphertext (bold are substitutions)

ADIYS RIUKB OCKKL MIGHK AZOTO EIOOL IFTAG
PAUEF VATAS CIITW EOCNO EIOOL BMTFV EGGOP
CNEKI HSSEW NECSE DDAAA RCWXS ANSNP HHEUL
QONOF EEGOS WLPCM AJEOC MIUAX

October 6, 2021
ECS 235A, Computer and Information Security
Look For Clues

• **AJE** in last line suggests “are”, meaning second alphabet maps A into S:

```
ALIYS  RICKB  OCKSL  MIGHS  AZOTO  MIOOL  INTAG
PACEF  VATIS  CIITE  EOCNO  MIOOL  BUTFV  EGOOP
CNESI  HSSEE  NECSE  LDAAA  RECXS  ANANP  HHECL
QNONON  EEGOS  ELPDM  AREOC  MICAX
```
Next Alphabet

• **MICAX** in last line suggests “mical” (a common ending for an adjective), meaning fourth alphabet maps O into A:

 ALIMS RICKP OCKSL AIGHS ANOTO MICOL INTOG
 PACET VATIS QIITE ECCNO MICOL BUTTV EGOOD
 CNESI VSSEE NSCSE LDOAA RECLS ANAND HHECL
 EONON ESGOS ELDCM ARECC MICAL
Got It!

- QI means that U maps into I, as Q is always followed by U:

 ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS
 PACET HATIS QUITE ECONO MICAL BUTTH EGOOD
 ONESI VESEE NSOSE LDOMA RECLE ANAND THECL
 EANON ESSOS ELDOM ARECO MICAL
One-Time Pad

• A Vigenère cipher with a random key at least as long as the message
 • Provably unbreakable
 • Why? Look at ciphertext DXQR. Equally likely to correspond to plaintext DOIT (key AJIY) and to plaintext DONT (key AJDY) and any other 4 letters
• Warning: keys must be random, or you can attack the cipher by trying to regenerate the key
 • Approximations, such as using pseudorandom number generators to generate keys, are not random
Overview of the DES

• A block cipher:
 • encrypts blocks of 64 bits using a 64 bit key
 • outputs 64 bits of ciphertext

• A product cipher
 • basic unit is the bit
 • performs both substitution and transposition (permutation) on the bits

• Cipher consists of 16 rounds (iterations) each with a 48 bit round key generated from the user-supplied key
Structure of the DES

• Input is first permuted, then split into left half (L) and right half (R), each 32 bits

• Round begins; R and round key run through function f, then xor’ed with L
 • f expands R to 48 bits, xors with round key, and then each 6 bits of this are run through S-boxes (substitution boxes), each of which gives 4 bits of output
 • Those 32 bits are permuted and this is the output of f

• R and L swapped, ending the round
 • Swapping does not occur in the last round

• After last round, L and R combined, permuted, forming DES output