Locks and Keys

• Associate information (*lock*) with object, information (*key*) with subject
 • Latter controls what the subject can access and how
 • Subject presents key; if it corresponds to any of the locks on the object, access granted

• This can be dynamic
 • ACLs, C-Lists static and must be manually changed
 • Locks and keys can change based on system constraints, other factors (not necessarily manual)
Cryptographic Implementation

- Enciphering key is lock; deciphering key is key
 - Encipher object \(o \); store \(E_k(o) \)
 - Use subject’s key \(k' \) to compute \(D_k(E_k(o)) \)
 - Any of \(n \) can access \(o \): store
 \[
 o' = (E_1(o), ..., E_n(o))
 \]
 - Requires consent of all \(n \) to access \(o \): store
 \[
 o' = (E_1(E_2(...(E_n(o))...))
 \]
Example: IBM

- IBM 370: process gets access key; pages get storage key and fetch bit
 - Fetch bit clear: read access only
 - Fetch bit set, access key 0: process can write to (any) page
 - Fetch bit set, access key matches storage key: process can write to page
 - Fetch bit set, access key non-zero and does not match storage key: no access allowed
Example: Cisco Router

• Dynamic access control lists

  ```
  access-list 100 permit tcp any host 10.1.1.1 eq telnet
  access-list 100 dynamic test timeout 180 permit ip any host 10.1.2.3 time-range my-time
  time-range my-time
  periodic weekdays 9:00 to 17:00
  line vty 0 2
  login local
  autocommand access-enable host timeout 10
  ```

• Limits external access to 10.1.2.3 to 9AM–5PM

 • Adds temporary entry for connecting host once user supplies name, password to router
 • Connections good for 180 minutes
 • Drops access control entry after that
Type Checking

• Lock is type, key is operation
 • Example: UNIX system call *write* won’t work on directory object but does work on file
 • Example: split I&D space of PDP-11
 • Example: countering buffer overflow attacks on the stack by putting stack on non-executable pages/segments
 • Then code uploaded to buffer won’t execute
 • Does not stop other forms of this attack, though ...
More Examples

• LOCK system:
 • Compiler produces “data”
 • Trusted process must change this type to “executable” before program can be executed

• Sidewinder firewall
 • Subjects assigned domain, objects assigned type
 • Example: ingress packets get one type, egress packets another
 • All actions controlled by type, so ingress packets cannot masquerade as egress packets (and vice versa)
Sharing Secrets

- Implements separation of privilege
- Use \((t, n)\)-threshold scheme
 - Data divided into \(n\) parts
 - Any \(t\) parts sufficient to derive original data
- Or-access and and-access can do this
 - Increases the number of representations of data rapidly as \(n, t\) grow
 - Cryptographic approaches more common
Shamir’s Scheme

• Goal: use \((t, n)\)-threshold scheme to share cryptographic key encoding data
 • Based on Lagrange polynomials
 • Idea: take polynomial \(p(x)\) of degree \(t-1\), set constant term \((p(0))\) to key
 • Compute value of \(p\) at \(n\) points, \textit{excluding} \(x = 0\)
 • By algebra, need values of \(p\) at any \(t\) distinct points to derive polynomial, and hence constant term (key)
Quick Review: Entities

• Subject: active entity
 • Causes information to flow or system state to change
 • Examples: processes, some devices
 • At a higher layer of abstraction: users, other computers

• Object: passive entity
 • Contains or receives information
 • Examples: files, some devices
 • At a higher layer of abstraction: file server, network
Reference Monitor

- *Reference monitor* is access control concept of an abstract machine that mediates all accesses to objects by subjects.

- *Reference validation mechanism* (RVM) is an implementation of the reference monitor concept.
 - Tamperproof
 - Complete (always invoked and can never be bypassed)
 - Simple (small enough to be subject to analysis and testing, the completeness of which can be assured)
 - Last engenders trust by providing evidence of correctness

- Note: RVM is almost always called a reference monitor too.
Examples (Or, What Should Be Examples)

• *Security kernel* combines hardware and software to implement reference monitor

• *Trusted computing base (TCB)* consists of all protection mechanisms within a system responsible for enforcing security policy
 • Includes hardware and software
 • Generalizes notion of security kernel
Policy and Reference Monitor

• Reference monitor implements a given policy
 • It has a tamperproof authorization database
 • Also maintains an audit trail (record of security-related events) for review
The Confinement Problem

• What it is
• Isolating entities
 • Virtual machines
 • Sandboxes
• Covert channels
Example Problem

- Server balances bank accounts for clients

- Server security issues:
 - Record correctly who used it
 - Send *only* balancing info to client

- Client security issues:
 - Log use correctly
 - Do not save or retransmit data client sends
Generalization

• Client sends request, data to server
• Server performs some function on data
• Server returns result to client
• Access controls:
 • Server must ensure the resources it accesses on behalf of client include only resources client is authorized to access
 • Server must ensure it does not reveal client’s data to any entity not authorized to see the client’s data
Confinement Problem

• Problem of preventing a server from leaking information that the user of the service considers confidential
Total Isolation

• Process cannot communicate with any other process
• Process cannot be observed

Impossible for this process to leak information
 • Not practical as process uses observable resources such as CPU, secondary storage, networks, etc.
Example

- Processes p, q not allowed to communicate
 - But they share a file system

- Communications protocol:
 - p sends a bit by creating a file called 0 or 1, then a second file called $send$
 - p waits until $send$ is deleted before repeating to send another bit
 - q waits until file $send$ exists, then looks for file 0 or 1; whichever exists is the bit
 - q then deletes 0, 1, and $send$ and waits until $send$ is recreated before repeating to read another bit
Covert Channel

• A path of communication not designed to be used for communication
• In example, file system is a (storage) covert channel
Rule of Transitive Confinement

• If p is confined to prevent leaking, and it invokes q, then q must be similarly confined to prevent leaking

• Rule: if a confined process invokes a second process, the second process must be as confined as the first
Isolation

- Constrain process execution in such a way it can only interact with other entities in a manner preserving isolation
 - Hardware isolation
 - Virtual machines
 - Library operating systems
 - Sandboxes

- Modify program or process so that its actions will preserve isolation
 - Program rewriting
 - Compiling
 - Loading
Hardware Isolation

• Ensure the hardware is disconnected from any other system
 • This includes networking, including wireless

• Example: SCADA systems
 • 1st generation: serial protocols, not connected to other systems or networks; no security defenses needed, focus being on malfunctions
 • 2nd generation: serial networks connected to computers not connected to Internet
 • 3rd generation: TCP/IP protocol running on networks connected to Internet; need security defenses for attackers coming in over Internet

• Example: electronic voting systems
 • Physical isolation protects systems from attackers changing votes remotely
 • Required in many U.S. states, such as California: never connect them to any network
Virtual Machine

• Program that simulates hardware of a machine
 • Machine may be an existing, physical one or an abstract one
 • Uses special operating system, called *virtual machine monitor (VMM)* or *hypervisor*, to provide environment simulating target machine

• Types of virtual machines
 • Type 1 hypervisor: runs directly on hardware
 • Type 2 hypervisor: runs on another operating system

• Existing OSes do not need to be modified
 • Run under VMM, which enforces security policy
 • Effectively, VMM is a security kernel
VH$_i$ is virtual machine i
T2H$_i$ is type-2 hypervisor i
VMM as Security Kernel

• VMM deals with subjects (the VMs)
 • Knows nothing about the processes within the VM

• VMM applies security checks to subjects
 • By transitivity, these controls apply to processes on VMs

• Thus, satisfies rule of transitive confinement
Example: Xen Hypervisor

• Xen 3.0 hypervisor on Intel virtualization technology
• Two modes, VMX root and non-root operation
• Hardware-based VMs (HVMs) are fully virtualized domains, support unmodified guest operating systems and run in non-root operation mode
 • Xen hypervisor runs in VMX root mode
• 8 levels of privilege
 • 4 in VMX root operation mode
 • 4 in VMX root operation mode
 • No need to virtualize one of the privilege levels!
Xen and Privileged Instructions

• Guest operating system executes privileged instruction
 • But this can only be done as a VMX root operation
• Control transfers to Xen hypervisor (called VM exit)
• Hypervisor determines whether to execute instruction
• After, it updates HVM appropriately and returns control to guest operating system (called VM entry)
Problem

- Physical resources shared
 - System CPU, disks, etc.
- May share logical resources
 - Depends on how system is implemented
- Allows covert channels