Lecture 15
October 25, 2021

October 25, 2021 ECS 235A, Computer and Information Security

Sandboxes

* An environment in which actions are restricted in accordance with

security policy

* Limit execution environment as nheeded

* Program not modified
* Libraries, kernel modified to restrict actions

* Modify program to check, restrict actions
* Like dynamic debuggers, profilers

October 25, 2021 ECS 235A, Computer and Information Security

Slide 15-2

Example: Capsicum

* Framework developed to sandbox an application

* Capability provides fine-grained rights for accessing, manipulating
underlying file

* To enter sandbox (capability mode), process issues cap _enter

* Given file descriptor, create capability with cap _new
* Mask of rights indicates what rights are to be set; if capability exists, mask must be
subset of rights in that capability

* At user level, library provides interface to start sandboxed process and
delegate rights to it

* All nondelegated file descriptors closed
* Address space flushed
* Socket returned to creator to enable it to communicate with new process

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-3

Example: Capsicum (con’t)

* Global namespaces not available

* So system calls that depend on that (like open(2)) don’t work
* Need to use a modified open that takes file descriptor for containing directory

e Other system calls modified appropriately

» System calls creating memory objects can create anonymous ones, not named ones (as
those names are in global namespace)

e Subprocesses cannot escalate privileges
* But a privileged process can enter capability mode

* All restrictions applied in kernel, not at system call interface

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-4

Program Confinement and TCB

* Confinement mechanisms part of trusted computing bases
* On failure, less protection than security officers, users believe
* “False sense of security”

* Must ensure confinement mechanism correctly implements desired
security policy

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-5

Covert Channels

* Shared resources as communication paths

* Covert storage channel uses attribute of shared resource
* Disk space, message size, etc.

* Covert timing channel uses temporal or ordering relationship among
accesses to shared resource
* Regulating CPU usage, order of reads on disk

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-6

Example Storage Channel

* Processes p, g not allowed to communicate
e But they share a file system!

 Communications protocol:
* p sends a bit by creating a file called 0 or 1, then a second file called send
* p waits until send is deleted before repeating to send another bit
e g waits until file send exists, then looks for file 0 or 1; whichever exists is the
bit
* g then deletes 0, 1, and send and waits until send is recreated before repeating to read
another bit

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-7

Example Timing Channel

e System has two VMs
* Sending machine S, receiving machine R

* To send:

* For 0, S immediately relinquishes CPU
* For example, run a process that instantly blocks

 For 1, S uses full quantum
e For example, run a CPU-intensive process

* R measures how quickly it gets CPU

* Uses real-time clock to measure intervals between access to shared resource
(CPU)

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-8

Example Covert Channel

e Uses ordering of events; does not use clock
* Two VMs sharing disk cylinders 100 to 200

* SCAN algorithm schedules disk accesses
* One VM is High (H), other is Low (L)

* |dea: L will issue requests for blocks on cylinders 139 and 161 to be
read
* If read as 139, then 161, it’s a 1 bit
* If read as 161, then 139, it’s a O bit

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-9

How It Works

* [issues read for data on cylinder 150
* Relinquishes CPU when done; arm now at 150

* H runs, issues read for data on cylinder 140
* Relinquishes CPU when done; arm now at 140

* [runs, issues read for data on cylinders 139 and 161
e Due to SCAN, reads 139 first, then 161
* This correspondstoal

* To send a 0, H would have issued read for data on cylinder 160

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-10

Analysis

* Timing or storage?
* Usual definition = storage (no timer, clock)
* Modify example to include timer

* [uses this to determine how long requests take to complete
* Time to seek to 139 < time to seek to 161 = 1; otherwise, O

* Channel works same way
* Suggests it’s a timing channel; hence our definition

October 25, 2021 ECS 235A, Computer and Information Security

Slide 15-11

Noisy vs. Noiseless

* Noiseless: covert channel uses resource available only to sender,
receiver

* Noisy: covert channel uses resource available to others as well as to
sender, receiver

* |dea is that others can contribute extraneous information that receiver must
filter out to “read” sender’s communication

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-12

Defending Against Covert Channels

e Add lots of noise

* The idea is to prevent the receiver from being able to pick up the signal the
sender is sending

* Make the events regular
* Similar to adding noise, this hides the signal in the regularity

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-13

Vulnerability Classification

* Describe flaws from differing perspectives
* Exploit-oriented
 Hardware, software, interface-oriented

e Goals vary, common ones are.

* Specify, design, implement computer system without vulnerabilities
* Analyze computer system to detect vulnerabilities

* Address any vulnerabilities introduced during system operation

* Detect attempted exploitations of vulnerabilities

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-14

Example Flaws

e Use these to compare classification schemes
* First one: race condition (xterm)

* Second one: buffer overflow on stack leading to execution of injected
code (fingerd)

* Both are very well known, and fixes available!
* And should be installed everywhere ...

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-15

Flaw #1: xterm

e xterm emulates terminal under X11 window system

* Must run as root user on UNIX systems
* No longer universally true; reason irrelevant here

* Log feature: user can log all input, output to file
* User names file

* If file does not exist, xterm creates it, makes owner the user

* |If file exists, xterm checks user can write to it, and if so opens file to append
log to it

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-16

File Exists

* Check that user can write to file requires special system call
* Because root can append to any file, check in open will always succeed

Check that user can write to file “/usr/tom/X”
if (access(”/usr/tom/X"”, W OK) == 0){
Open “/usr/tom/X” to append log entries
if ((£fd = open(“/usr/tom/X"”, O WRONLY|O APPEND))< 0){
/* handle error: cannot open file */

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-17

Problem

 Binding of file name “/usr/tom/X” to file object can change between
first and second lines
* left is at access; right is at open
* Note file opened is not file checked

after
attack

~ access(“/usr/tom/xyzzy”, W_OK
access(“/usr/tom/xyzzy”, W_OK) (“/usr/tom/xyzzy”, W_OK)

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-18

Flaw #2: fingerd

* Exploited by Internet Worm of 1988

* Recurs in many places, even now

* finger client send request for information to server fingerd (finger
daemon)

* Request is name of at most 512 chars
* What happens if you send more?

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-19

Buffer Overflow

e Extra chars overwrite rest of
stack, as shown

e Can make those chars change
return address to point to
beginning of buffer

* If buffer contains small program
to spawn shell, attacker gets shell
on target system

October 25, 2021

gets local
variables

other return

state info

return address

of main

A\ 4

parameter
to gets

input buffer

main local
variables

ECS 235A, Computer and Information Security

after
message

gets local
variables

other return
state info

v

address of
input buffer

program to
invoke shell

main local
variables

Slide 15-20

Frameworks

* Goals dictate structure of classification scheme

* Guide development of attack tool = focus is on steps needed to exploit
vulnerability

* Aid software development process = focus is on design and programming
errors causing vulnerabilities

* Following schemes classify vulnerability as n-tuple, each element of
n-tuple being classes into which vulnerability falls

* Some have 1 axis; others have multiple axes

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-21

Research Into Secure Operating Systems
(RISOS)

e Goal: aid computer, system managers in understanding security issues
in OSes, and help determine how much effort required to enhance

system security

* Attempted to develop methodologies and software for detecting
some problems, and techniques for avoiding and ameliorating other

problems
* Examined Multics, TENEX, TOPS-10, GECOS, OS/MVT, SDS-940, EXEC-8

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-22

Classification Scheme

* Incomplete parameter validation

* Inconsistent parameter validation

* Implicit sharing of privileged/confidential data

* Asynchronous validation/inadequate serialization

* Inadequate identification/authentication/authorization
* Violable prohibition/limit

* Exploitable logic error

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-23

Incomplete Parameter Validation

e Parameter not checked before use

* Example: emulating integer division in kernel (RISC chip involved)
e Caller provided addresses for quotient, remainder
* Quotient address checked to be sure it was in user’s protection domain

e Remainder address not checked

* Set remainder address to address of process’ level of privilege
* Compute 25/5 and you have level 0 (kernel) privileges

* Check for type, format, range of values, access rights, presence (or
absence)

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-24

Inconsistent Parameter Validation

* Each routine checks parameter is in proper format for that routine
but the routines require different formats

* Example: each database record 1 line, colons separating fields
* One program accepts colons, newlines as pat of data within fields
* Another program reads them as field and record separators
* This allows bogus records to be entered

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-25

mplicit Sharing of Privileged / Confidential
Data

* OS does not isolate users, processes properly

* Example: file password protection
* OS allows user to determine when paging occurs

* Files protected by passwords
* Passwords checked char by char; stops at first incorrect char

* Position guess for password so page fault occurred between 1st, 2nd char
* If no page fault, 1st char was wrong; if page fault, it was right

e Continue until password discovered

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-26

Asynchronous Validation / Inadequate
Serialization

* Time of check to time of use flaws, intermixing reads and writes to
create inconsistencies

* Example: xterm flaw discussed earlier

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-27

Inadequate ldentification / Authorization /
Authentication

* Erroneously identifying user, assuming another’s privilege, or tricking
someone into executing program without authorization

* Example: OS on which access to file named “SYSS*DLOCS” meant
process privileged

* Check: can process access any file with qualifier name beginning with “SYS”
and file name beginning with “DLO”?

* If your process can access file “SYSA*DLOCS”, which is ordinary file, your
process is privileged

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-28

