
Lecture 15
October 25, 2021

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-1

Sandboxes

• An environment in which actions are restricted in accordance with
security policy
• Limit execution environment as needed

• Program not modified
• Libraries, kernel modified to restrict actions

• Modify program to check, restrict actions
• Like dynamic debuggers, profilers

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-2

Example: Capsicum

• Framework developed to sandbox an application
• Capability provides fine-grained rights for accessing, manipulating

underlying file
• To enter sandbox (capability mode), process issues cap_enter
• Given file descriptor, create capability with cap_new

• Mask of rights indicates what rights are to be set; if capability exists, mask must be
subset of rights in that capability

• At user level, library provides interface to start sandboxed process and
delegate rights to it
• All nondelegated file descriptors closed
• Address space flushed
• Socket returned to creator to enable it to communicate with new process

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-3

Example: Capsicum (con’t)

• Global namespaces not available
• So system calls that depend on that (like open(2)) don’t work

• Need to use a modified open that takes file descriptor for containing directory
• Other system calls modified appropriately

• System calls creating memory objects can create anonymous ones, not named ones (as
those names are in global namespace)

• Subprocesses cannot escalate privileges
• But a privileged process can enter capability mode

• All restrictions applied in kernel, not at system call interface

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-4

Program Confinement and TCB

• Confinement mechanisms part of trusted computing bases
• On failure, less protection than security officers, users believe
• “False sense of security”

• Must ensure confinement mechanism correctly implements desired
security policy

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-5

Covert Channels

• Shared resources as communication paths
• Covert storage channel uses attribute of shared resource
• Disk space, message size, etc.

• Covert timing channel uses temporal or ordering relationship among
accesses to shared resource
• Regulating CPU usage, order of reads on disk

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-6

Example Storage Channel

• Processes p, q not allowed to communicate
• But they share a file system!

• Communications protocol:
• p sends a bit by creating a file called 0 or 1, then a second file called send

• p waits until send is deleted before repeating to send another bit
• q waits until file send exists, then looks for file 0 or 1; whichever exists is the

bit
• q then deletes 0, 1, and send and waits until send is recreated before repeating to read

another bit

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-7

Example Timing Channel

• System has two VMs
• Sending machine S, receiving machine R

• To send:
• For 0, S immediately relinquishes CPU

• For example, run a process that instantly blocks
• For 1, S uses full quantum

• For example, run a CPU-intensive process

• R measures how quickly it gets CPU
• Uses real-time clock to measure intervals between access to shared resource

(CPU)

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-8

Example Covert Channel

• Uses ordering of events; does not use clock
• Two VMs sharing disk cylinders 100 to 200
• SCAN algorithm schedules disk accesses
• One VM is High (H), other is Low (L)

• Idea: L will issue requests for blocks on cylinders 139 and 161 to be
read
• If read as 139, then 161, it’s a 1 bit
• If read as 161, then 139, it’s a 0 bit

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-9

How It Works

• L issues read for data on cylinder 150
• Relinquishes CPU when done; arm now at 150

• H runs, issues read for data on cylinder 140
• Relinquishes CPU when done; arm now at 140

• L runs, issues read for data on cylinders 139 and 161
• Due to SCAN, reads 139 first, then 161
• This corresponds to a 1

• To send a 0, H would have issued read for data on cylinder 160

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-10

Analysis

• Timing or storage?
• Usual definition Þ storage (no timer, clock)

• Modify example to include timer
• L uses this to determine how long requests take to complete
• Time to seek to 139 < time to seek to 161 Þ 1; otherwise, 0

• Channel works same way
• Suggests it’s a timing channel; hence our definition

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-11

Noisy vs. Noiseless

• Noiseless: covert channel uses resource available only to sender,
receiver
• Noisy: covert channel uses resource available to others as well as to

sender, receiver
• Idea is that others can contribute extraneous information that receiver must

filter out to “read” sender’s communication

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-12

Defending Against Covert Channels

• Add lots of noise
• The idea is to prevent the receiver from being able to pick up the signal the

sender is sending

• Make the events regular
• Similar to adding noise, this hides the signal in the regularity

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-13

Vulnerability Classification

• Describe flaws from differing perspectives
• Exploit-oriented
• Hardware, software, interface-oriented

• Goals vary; common ones are:
• Specify, design, implement computer system without vulnerabilities
• Analyze computer system to detect vulnerabilities
• Address any vulnerabilities introduced during system operation
• Detect attempted exploitations of vulnerabilities

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-14

Example Flaws

• Use these to compare classification schemes
• First one: race condition (xterm)
• Second one: buffer overflow on stack leading to execution of injected

code (fingerd)
• Both are very well known, and fixes available!
• And should be installed everywhere …

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-15

Flaw #1: xterm

• xterm emulates terminal under X11 window system
• Must run as root user on UNIX systems

• No longer universally true; reason irrelevant here

• Log feature: user can log all input, output to file
• User names file
• If file does not exist, xterm creates it, makes owner the user
• If file exists, xterm checks user can write to it, and if so opens file to append

log to it

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-16

File Exists

• Check that user can write to file requires special system call
• Because root can append to any file, check in open will always succeed

Check that user can write to file “/usr/tom/X”
if (access(“/usr/tom/X”, W_OK) == 0){

Open “/usr/tom/X” to append log entries
if ((fd = open(“/usr/tom/X”, O_WRONLY|O_APPEND))< 0){

/* handle error: cannot open file */
}

}

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-17

Problem

• Binding of file name “/usr/tom/X” to file object can change between
first and second lines
• left is at access; right is at open
• Note file opened is not file checked

October 25, 2021 ECS 235A, Computer and Information Security

/
//

et
c

passwd data

xyzzy data

passw
d

usr
tom

xyzzy

access(“/usr/tom/xyzzy”, W_OK)

/
//

et
c

passwd data

xyzzy data

passw
d

usr
tom

access(“/usr/tom/xyzzy”, W_OK)

xyzzy

after
attack

Slide 15-18

Flaw #2: fingerd

• Exploited by Internet Worm of 1988
• Recurs in many places, even now

• finger client send request for information to server fingerd (finger
daemon)
• Request is name of at most 512 chars
• What happens if you send more?

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-19

Buffer Overflow

• Extra chars overwrite rest of
stack, as shown
• Can make those chars change

return address to point to
beginning of buffer
• If buffer contains small program

to spawn shell, attacker gets shell
on target system

October 25, 2021 ECS 235A, Computer and Information Security

main local
variables

input buffer

parameter
to gets

return address
of main

other return
state info

gets local
variables

main local
variables

program to
invoke shell

address of
input buffer

other return
state info

gets local
variables

after
message

Slide 15-20

Frameworks

• Goals dictate structure of classification scheme
• Guide development of attack tool Þ focus is on steps needed to exploit

vulnerability
• Aid software development process Þ focus is on design and programming

errors causing vulnerabilities

• Following schemes classify vulnerability as n-tuple, each element of
n-tuple being classes into which vulnerability falls
• Some have 1 axis; others have multiple axes

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-21

Research Into Secure Operating Systems
(RISOS)
• Goal: aid computer, system managers in understanding security issues

in OSes, and help determine how much effort required to enhance
system security
• Attempted to develop methodologies and software for detecting

some problems, and techniques for avoiding and ameliorating other
problems
• Examined Multics, TENEX, TOPS-10, GECOS, OS/MVT, SDS-940, EXEC-8

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-22

Classification Scheme

• Incomplete parameter validation
• Inconsistent parameter validation
• Implicit sharing of privileged/confidential data
• Asynchronous validation/inadequate serialization
• Inadequate identification/authentication/authorization
• Violable prohibition/limit
• Exploitable logic error

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-23

Incomplete Parameter Validation

• Parameter not checked before use
• Example: emulating integer division in kernel (RISC chip involved)
• Caller provided addresses for quotient, remainder
• Quotient address checked to be sure it was in user’s protection domain
• Remainder address not checked

• Set remainder address to address of process’ level of privilege
• Compute 25/5 and you have level 0 (kernel) privileges

• Check for type, format, range of values, access rights, presence (or
absence)

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-24

Inconsistent Parameter Validation

• Each routine checks parameter is in proper format for that routine
but the routines require different formats
• Example: each database record 1 line, colons separating fields
• One program accepts colons, newlines as pat of data within fields
• Another program reads them as field and record separators
• This allows bogus records to be entered

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-25

Implicit Sharing of Privileged / Confidential
Data
• OS does not isolate users, processes properly
• Example: file password protection
• OS allows user to determine when paging occurs
• Files protected by passwords

• Passwords checked char by char; stops at first incorrect char
• Position guess for password so page fault occurred between 1st, 2nd char

• If no page fault, 1st char was wrong; if page fault, it was right
• Continue until password discovered

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-26

Asynchronous Validation / Inadequate
Serialization
• Time of check to time of use flaws, intermixing reads and writes to

create inconsistencies
• Example: xterm flaw discussed earlier

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-27

Inadequate Identification / Authorization /
Authentication
• Erroneously identifying user, assuming another’s privilege, or tricking

someone into executing program without authorization
• Example: OS on which access to file named “SYS$*DLOC$” meant

process privileged
• Check: can process access any file with qualifier name beginning with “SYS”

and file name beginning with “DLO”?
• If your process can access file “SYSA*DLOC$”, which is ordinary file, your

process is privileged

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-28

