
Lecture 15
October 25, 2021

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-1



Sandboxes

• An environment in which actions are restricted in accordance with 
security policy
• Limit execution environment as needed

• Program not modified
• Libraries, kernel modified to restrict actions

• Modify program to check, restrict actions
• Like dynamic debuggers, profilers
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Example: Capsicum

• Framework developed to sandbox an application
• Capability provides fine-grained rights for accessing, manipulating 

underlying file
• To enter sandbox (capability mode), process issues cap_enter
• Given file descriptor, create capability with cap_new

• Mask of rights indicates what rights are to be set; if capability exists, mask must be 
subset of rights in that capability

• At user level, library provides interface to start sandboxed process and 
delegate rights to it
• All nondelegated file descriptors closed
• Address space flushed
• Socket returned to creator to enable it to communicate with new process
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Example: Capsicum (con’t)

• Global namespaces not available
• So system calls that depend on that (like open(2)) don’t work

• Need to use a modified open that takes file descriptor for containing directory
• Other system calls modified appropriately

• System calls creating memory objects can create anonymous ones, not named ones (as 
those names are in global namespace)

• Subprocesses cannot escalate privileges
• But a privileged process can enter capability mode

• All restrictions applied in kernel, not at system call interface
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Program Confinement and TCB

• Confinement mechanisms part of trusted computing bases
• On failure, less protection than security officers, users believe
• “False sense of security”

• Must ensure confinement mechanism correctly implements desired 
security policy
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Covert Channels

• Shared resources as communication paths
• Covert storage channel uses attribute of shared resource
• Disk space, message size, etc.

• Covert timing channel uses temporal or ordering relationship among 
accesses to shared resource
• Regulating CPU usage, order of reads on disk
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Example Storage Channel

• Processes p, q not allowed to communicate
• But they share a file system!

• Communications protocol:
• p sends a bit by creating a file called 0 or 1, then a second file called send

• p waits until send is deleted before repeating to send another bit
• q waits until file send exists, then looks for file 0 or 1; whichever exists is the 

bit
• q then deletes 0, 1, and send and waits until send is recreated before repeating to read 

another bit
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Example Timing Channel

• System has two VMs
• Sending machine S, receiving machine R

• To send:
• For 0, S immediately relinquishes CPU

• For example, run a process that instantly blocks
• For 1, S uses full quantum

• For example, run a CPU-intensive process

• R measures how quickly it gets CPU
• Uses real-time clock to measure intervals between access to shared resource 

(CPU)
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Example Covert Channel

• Uses ordering of events; does not use clock
• Two VMs sharing disk cylinders 100 to 200
• SCAN algorithm schedules disk accesses
• One VM is High (H), other is Low (L)

• Idea: L will issue requests for blocks on cylinders 139 and 161 to be 
read
• If read as 139, then 161, it’s a 1 bit
• If read as 161, then 139, it’s a 0 bit
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How It Works

• L issues read for data on cylinder 150
• Relinquishes CPU when done; arm now at 150

• H runs, issues read for data on cylinder 140
• Relinquishes CPU when done; arm now at 140

• L runs, issues read for data on cylinders 139 and 161
• Due to SCAN, reads 139 first, then 161
• This corresponds to a 1

• To send a 0, H would have issued read for data on cylinder 160
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Analysis

• Timing or storage?
• Usual definition Þ storage (no timer, clock)

• Modify example to include timer
• L uses this to determine how long requests take to complete
• Time to seek to 139 < time to seek to 161 Þ 1; otherwise, 0

• Channel works same way
• Suggests it’s a timing channel; hence our definition
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Noisy vs. Noiseless

• Noiseless: covert channel uses resource available only to sender, 
receiver
• Noisy: covert channel uses resource available to others as well as to 

sender, receiver
• Idea is that others can contribute extraneous information that receiver must 

filter out to “read” sender’s communication
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Defending Against Covert Channels

• Add lots of noise
• The idea is to prevent the receiver from being able to pick up the signal the 

sender is sending

• Make the events regular
• Similar to adding noise, this hides the signal in the regularity
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Vulnerability Classification

• Describe flaws from differing perspectives
• Exploit-oriented
• Hardware, software, interface-oriented

• Goals vary; common ones are:
• Specify, design, implement computer system without vulnerabilities
• Analyze computer system to detect vulnerabilities
• Address any vulnerabilities introduced during system operation
• Detect attempted exploitations of vulnerabilities
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Example Flaws

• Use these to compare classification schemes
• First one: race condition (xterm)
• Second one: buffer overflow on stack leading to execution of injected 

code (fingerd)
• Both are very well known, and fixes available!
• And should be installed everywhere …
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Flaw #1: xterm

• xterm emulates terminal under X11 window system
• Must run as root user on UNIX systems

• No longer universally true; reason irrelevant here

• Log feature: user can log all input, output to file
• User names file
• If file does not exist, xterm creates it, makes owner the user
• If file exists, xterm checks user can write to it, and if so opens file to append 

log to it
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File Exists

• Check that user can write to file requires special system call
• Because root can append to any file, check in open will always succeed

Check that user can write to file “/usr/tom/X”
if (access(“/usr/tom/X”, W_OK) == 0){

Open “/usr/tom/X” to append log entries
if ((fd = open(“/usr/tom/X”, O_WRONLY|O_APPEND))< 0){

/* handle error: cannot open file */
}

}

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-17



Problem

• Binding of file name “/usr/tom/X” to file object can change between 
first and second lines
• left is at access; right is at open
• Note file opened is not file checked
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Flaw #2: fingerd

• Exploited by Internet Worm of 1988
• Recurs in many places, even now

• finger client send request for information to server fingerd (finger
daemon)
• Request is name of at most 512 chars
• What happens if you send more?
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Buffer Overflow

• Extra chars overwrite rest of 
stack, as shown
• Can make those chars change 

return address to point to 
beginning of buffer
• If buffer contains small program 

to spawn shell, attacker gets shell 
on target system
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Frameworks

• Goals dictate structure of classification scheme
• Guide development of attack tool Þ focus is on steps needed to exploit 

vulnerability
• Aid software development process Þ focus is on design and programming 

errors causing vulnerabilities

• Following schemes classify vulnerability as n-tuple, each element of 
n-tuple being classes into which vulnerability falls
• Some have 1 axis; others have multiple axes
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Research Into Secure Operating Systems 
(RISOS)
• Goal: aid computer, system managers in understanding security issues 

in OSes, and help determine how much effort required to enhance 
system security
• Attempted to develop methodologies and software for detecting 

some problems, and techniques for avoiding and ameliorating other 
problems
• Examined Multics, TENEX, TOPS-10, GECOS, OS/MVT, SDS-940, EXEC-8
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Classification Scheme

• Incomplete parameter validation
• Inconsistent parameter validation
• Implicit sharing of privileged/confidential data
• Asynchronous validation/inadequate serialization
• Inadequate identification/authentication/authorization
• Violable prohibition/limit
• Exploitable logic error

October 25, 2021 ECS 235A, Computer and Information Security Slide 15-23



Incomplete Parameter Validation

• Parameter not checked before use
• Example: emulating integer division in kernel (RISC chip involved)
• Caller provided addresses for quotient, remainder
• Quotient address checked to be sure it was in user’s protection domain
• Remainder address not checked

• Set remainder address to address of process’ level of privilege
• Compute 25/5 and you have level 0 (kernel) privileges 

• Check for type, format, range of values, access rights, presence (or 
absence)
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Inconsistent Parameter Validation

• Each routine checks parameter is in proper format for that routine 
but the routines require different formats
• Example: each database record 1 line, colons separating fields
• One program accepts colons, newlines as pat of data within fields
• Another program reads them as field and record separators
• This allows bogus records to be entered
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Implicit Sharing of Privileged / Confidential 
Data
• OS does not isolate users, processes properly
• Example: file password protection
• OS allows user to determine when paging occurs
• Files protected by passwords

• Passwords checked char by char; stops at first incorrect char
• Position guess for password so page fault occurred between 1st, 2nd char

• If no page fault, 1st char was wrong; if page fault, it was right
• Continue until password discovered
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Asynchronous Validation / Inadequate 
Serialization
• Time of check to time of use flaws, intermixing reads and writes to 

create inconsistencies
• Example: xterm flaw discussed earlier
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Inadequate Identification / Authorization / 
Authentication
• Erroneously identifying user, assuming another’s privilege, or tricking 

someone into executing program without authorization
• Example: OS on which access to file named “SYS$*DLOC$” meant 

process privileged
• Check: can process access any file with qualifier name beginning with “SYS” 

and file name beginning with “DLO”?
• If your process can access file “SYSA*DLOC$”, which is  ordinary file, your 

process is privileged
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