
Lecture 20
November 8, 2021

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-1



Logic Bombs

• A program that performs an action that violates the site security 
policy when some external event occurs
• Example: program that deletes company’s payroll records when one 

particular record is deleted
• The “particular record” is usually that of the person writing the logic bomb
• Idea is if (when) he or she is fired, and the payroll record deleted, the 

company loses all those records

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-2



Adware

• Trojan horse that gathers information for marketing purposes and 
displays advertisements
• Often selects ads to display based on gathered information

• Believed to have originated with a company announcing it would 
make its software available for free, because it would pop up window 
advertising company
• Benign as user had to opt in
• Spread through distribution of program only

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-3



Types of Behavior

• Low severity behavior: just display ads, don’t transmit information
• Medium severity behavior: transmits information deemed low risk, 

such as location information, and may display ads based on this
• High severity behavior: transmits personal information, and displays 

ads tailored to devices, people with those characteristic
• Typically very aggressive (annoying)
• Sometimes called madware

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-4



Getting Adware On a System

• Put on a web site user visits
• Put it in a banner enticing the user to click on it; this installs the adware
• Page may require user to install software to view parts of web site; software 

contains adware
• If page refreshes automatically, it may direct browser to run an executable

• Usually browser notifies user via a dialog box that may require a click; on click, program 
runs and installs adware

• Some browser plug-ins download, execute files automatically; there may be 
no indication of this
• Called drive-by downloading

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-5



Getting Adware on a System

• Put into software that user downloads
• Very common with mobile apps

• Problem: app asks for permission to carry out its tasks
• Some may be unnecessary; often hard for users to minimize permissions set
• Thus app may have access to camera, microphone, and may be able to make 

calls without going through dialing interface — and user does not realize this

• Example: survey of 900 Android apps
• 323 had unnecessary permissions

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-6



Economic Motives

• Used to target ads that use is most likely to respond to
• Purveyors get money for every ad displayed or clicked on
• Web site owners display ads on their sites
• Developers put adware libraries in their apps
• Others take apps, modify them to include adware, and put them on 

unauthorized app stores

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-7



Spyware

• Trojan horse that records information about the use of a computer for 
a third party
• Usually results in compromise of confidential information like keystrokes, 

passwords, credit card numbers, etc.
• Information can be stored for retrieval or sent to third party

• Put on a system the way any other malware gets onto system

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-8



Example: Pegasus

• Designed for Apple’s iPhone, attacker sends URL to victim who clicks 
on it, triggering attack that tries to gain control of iPhone
• First sends HTML file exploiting vulnerability in WebKit
• Basis for Safari and other browsers

• This downloads software to gain control of iPhone
• Software enciphered with different keys for each download
• Includes a loader for the next stage

• Loader downloads dynamic load libraries, daemons, other software 
and installs Pegasus
• If iPhone has previously been jailbroken, removes all acess to the iPhone 

provided by the earlier break

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-9



Example: Response to Pegasus

• Apple developed patches for the vulnerabilities exploited
• Deployed them in update to iPhone’s operating system, iOS

• Discovered when human rights activist received text messages with a 
suspicious link
• Sent messages to Citizens Lab
• Citizens Lab recognized links were associated with a manufacturer of spyware 

for government surveillance
• Lookout carried out technical analysis

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-10



Ransomware

• Malware inhibiting use of computer, resources until a ransom is paid
• Ransom is usually monetary, and must be paid through some anonymous 

mechanism (BitCoin is popular)
• PC CYBORG (1989) altered AUTOEXEC.BAT to count number of times 

system was booted; on 90th, names of all files on main drive (C:) 
enciphered and directories hidden
• User told to send fee to post office box to recover the system

• CryptoLocker (2013) encrypted files and gave victim 100 hours to pay 
ransom; if not, encryption keys destroyed
• Used evasive techniques to make tracking more difficult
• Spread via email as attachments

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-11



Example Protocol

Goal: Angie wants to extort money from Xavier
• Angie generates asymmetric key pair; embeds public key in malware
• She retains private key

• Malware infects Xavier’s system
• Generates symmetric key and uses that to encipher target data
• Enciphers symmetric key with public key, erases all instances of symmetric key
• Xavier sees message saying he needs to do something for Angie (usually send 

money); he does so and includes the encrypted symmetric key

• Angie then deciphers encrypted symmetric key with her private key, 
returns it to Xavier

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-12



Phishing

• Act of impersonating legitimate entity in order to obtain information 
such as passwords or credit card information without authorization
• Usually a web site associated with a business

• Usual approach: craft a web site that looks like the legitimate one
• Send out lots of email trying to persuade people to go to that web site
• Copy their login, password, and other information for later use

• More vicious attack: fake web site passes data on to real web site, and 
sends replies back to victim
• Man-in-the-middle attack

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-13



Example

• Heidi banks at MegaBank, with URL of https://www.megabank.com
• She receives a letter saying she needs to check her account for 

possible fraudulent activity
• Email includes link
• Link is visible as www.megabank.com
• But link actually connects to https://www.megabank.crookery.com

• Attacker records name, password, then give error
• If very clever, client is redirected to actual bank’s home page

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-14



Spearphishing

• Phishing attack tailored for particular user
• Used to attack specific (types of) users to obtain information
• Example: some employees of a major cybersecurity company received 

email called “2011 Recruitment Plan”
• They opened an attacked spreadsheet
• This exploited a vulnerability in a supporting program to install a backdoor so 

attackers could control system remotely
• Attackers used this as a springboard to compromise other systems in the 

company’s network, and ultimately stole sensitive information
• Embarrassment, financial costs of recovery large

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-15



Defenses

• Scanning
• Distinguishing between data, instructions
• Containing
• Specifying behavior
• Limiting sharing
• Statistical analysis

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-16



Scanning Defenses

• Malware alters memory contents or disk files
• Compute manipulation detection code (MDC) to generate signature 

block for data, and save it
• Later, recompute MDC and compare to stored MDC
• If different, data has changed

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-17



Example: tripwire

• File system scanner
• Initialization: it computes signature block for each file, saves it
• Signature consists of file attributes, cryptographic checksums
• System administrator selects what file attributes go into signature

• Checking file system: run tripwire
• Regenerates file signatures
• Compares them to stored file signatures and reports any differences

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-18



Assumptions

• Files do not contain malicious logic when original signature block 
generated
• Pozzo & Grey: implement Biba’s model on LOCUS to make assumption 

explicit
• Credibility ratings assign trustworthiness numbers from 0 (untrusted) to n

(signed, fully trusted)
• Subjects have risk levels

• Subjects can execute programs with credibility ratings ≥ risk level
• If credibility rating < risk level, must use special command to run program

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-19



Antivirus Programs

• Look for specific “malware signatures”
• If found, warn user and/or disinfect data

• At first, static sequences of bits, or patterns; now also includes 
patterns of behavior
• At first, derived manually; now usually done automatically
• Manual derivation impractical due to number of malwares

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-20



Example: Earlybird

• System for generating worm signatures based on worm increasing network 
traffic between hosts, and this traffic has many common substrings
• When a packet arrives, its contents hashed and destination port and 

protocol identifier appended; then check hash table (called dispersion 
table) to see if this content, port, and protocol have been seen
• If yes, increment counters for source, destination addresses; if both exceed a 

threshold, content may be worm signature
• If no, run through a multistage filter that applies 4 different hashes and checks for 

those hashes in different tables; count of entry with smallest count incremented; if 
all 4 counters exceed a second threshold, make entry in dispersion table

• Found several worms before antimalware vendors distributed signatures 
for them 

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-21



Example: Polygraph

• Assumes worm is polymorphic or metamorphic
• Generates classes of signatures, all based on substrings called tokens
• Conjunction signature: collection of tokens, matched if all tokens appear 

regardless of order
• Token-subsequence signature: like conjunction signature but tokens must 

appear in order
• Bayes signature associates a score with each token, and threshold 

with signature
• If probability of the payload as computed from token scores exceeds a 

threshold, match occurs
• Experimentally, Bayes signatures work well when there is little non-

malicious traffic, but if that’s more than 80% of network traffic, no 
worms identified

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-22



Behavioral Analysis

• Run suspected malware in a confined area, typically a sandbox, that 
simulates environment it will execute in
• Monitor it for some time period
• Look for anything considered “bad”; if it occurs, flag this as malware

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-23



Example: Panorama

• Loads suspected malware into a Windows system, which is itself loaded 
into Panorama and run
• Files belonging to suspect program are marked

• Test engine sends “sensitive” information to trusted application on 
Windows
• Taint engine monitors flow of information around system

• So when suspect program and trusted application run, behavior of information can 
be recorded in taint graphs

• Malware detection engine analyzes taint graphs for suspicious behavior
• Experimentally, Panorama tested against 42 malware samples, 56 benign 

samples; no false negatives, 3 false positives

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-24



Evasion

Malware can try to ensure malicious activity not triggered in analysis 
environment
• Wait for a (relatively) long time
• Wait for a particular input or external event
• Identify malware is running in constrained environment
• Check various descriptor tables
• Run sequence of instructions that generate an exception if not in a virtual 

machine (in 2010, estimates found 2.13% of malware samples did this)

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-25



Data vs. Instructions

• Malicious logic is both
• Virus: written to program (data); then executes (instructions)

• Approach: treat “data” and “instructions” as separate types, and 
require certifying authority to approve conversion
• Key are assumption that certifying authority will not make mistakes and 

assumption that tools, supporting infrastructure used in certifying process are 
not corrupt

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-26



Example: Duff and UNIX

• Observation: users with execute permission usually have read 
permission, too
• So files with “execute” permission have type “executable”; those without it, 

type “data”
• Executable files can be altered, but type immediately changed to “data”

• Implemented by turning off execute permission
• Certifier can change them back

• So virus can spread only if run as certifier

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-27



Containment

• Basis: a user (unknowingly) executes malicious logic, which then 
executes with all that user’s privileges
• Limiting accessibility of objects should limit spread of malicious logic and 

effects of its actions

• Approach draws on mechanisms for confinement

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-28



Information Flow Metrics

• Idea: limit distance a virus can spread
• Flow distance metric fd(x):
• Initially, all information x has fd(x) = 0
• Whenever information y is shared, fd(y) increases by 1
• Whenever y1, …, yn used as input to compute z, fd(z) = max(fd(y1), …, fd(yn))

• Information x accessible if and only if for some parameter V, fd(x) < V

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-29



Example

• Anne: VA = 3; Bill, Cathy: VB = VC = 2
• Anne creates program P containing virus
• Bill executes P
• P tries to write to Bill’s program Q; works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
• Q tries to write to Cathy’s program R; fails, as fd(Q) = 1, so fd(R) would be 2

• Problem: if Cathy executes P, R can be infected
• So, does not stop spread; slows it down greatly, though

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-30



Implementation Issues

• Metric associated with information, not objects
• You can tag files with metric, but how do you tag the information in them?
• This inhibits sharing

• To stop spread, make V = 0
• Disallows sharing
• Also defeats purpose of multi-user systems, and is crippling in scientific and 

developmental environments
• Sharing is critical here

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-31



Reducing Protection Domain

• Application of principle of least privilege
• Basic idea: remove rights from process so it can only perform its 

function
• Warning: if that function requires it to write, it can write anything
• But you can make sure it writes only to those objects you expect

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-32



Example: ACLs and C-Lists

• s1 owns file f1 and s2 owns program p2 and file f3
• Suppose s1 can read, write f1, execute p2, write f3

• Suppose s2 can read, write, execute p2 and read f3

• s1 needs to run p2
• p2 contains Trojan horse

• So s1 needs to ensure p12 (subject created when s1 runs p2) can’t write to f3
• Ideally, p12 has capability { (s1, p2, x ) } so no problem

• In practice, p12 inherits s1’s rights, so it can write to f3—bad! Note s1 does not own f3, so 
can’t change its rights over f3

• Solution: restrict access by others

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-33



Authorization Denial Subset

• Defined for each user si

• Contains ACL entries that others cannot exercise over objects si owns
• In example: R(s2) = { (s1, f3, w) }
• So when p12 tries to write to f3, as p12 owned by s1 and f3 owned by s2, system 

denies access

• Problem: how do you decide what should be in your authorization 
denial subset?

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-34



Karger’s Scheme

• Base it on attribute of subject, object
• Interpose a knowledge-based subsystem to determine if requested 

file access reasonable
• Sits between kernel and application

• Example: UNIX C compiler
• Reads from files with names ending in “.c”, “.h”
• Writes to files with names beginning with “/tmp/ctm” and assembly files with 

names ending in “.s”

• When subsystem invoked, if C compiler tries to write to “.c” file, 
request rejected

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-35



Lai and Gray

• Implemented modified version of Karger’s scheme on UNIX system
• Allow programs to access (read or write) files named on command line
• Prevent access to other files

• Two types of processes
• Trusted: no access checks or restrictions
• Untrusted: valid access list (VAL) controls access and is initialized to command 

line arguments plus any temporary files that the process creates

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-36



File Access Requests

1. If file on VAL, use effective UID/GID of process to determine if 
access allowed

2. If access requested is read and file is world-readable, allow access
3. If process creating file, effective UID/GID controls allowing creation

• Enter file into VAL as NNA (new non-argument); set permissions so no other 
process can read file

4. Ask user. If yes, effective UID/GID controls allowing access; if no, 
deny access

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-37



Example

• Assembler invoked from compiler
as x.s /tmp/ctm2345

and creates temp file /tmp/as1111
• VAL is

x.s /tmp/ctm2345 /tmp/as1111

• Now Trojan horse tries to copy x.s to another file
• On creation, file inaccessible to all except creating user so attacker cannot 

read it (rule 3)
• If file created already and assembler tries to write to it, user is asked (rule 4), 

thereby revealing Trojan horse 

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-38



Trusted Programs

• No VALs applied here
• UNIX command interpreters: csh, sh
• Program that spawn them: getty, login
• Programs that access file system recursively: ar, chgrp, chown, diff, du, dump, 

find, ls, restore, tar
• Programs that often access files not in argument list: binmail, cpp, dbx, mail, 

make, script, vi
• Various network daemons: fingerd, ftpd, sendmail, talkd, telnetd, tftpd

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-39


