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Logic Bombs

• A program that performs an action that violates the site security 
policy when some external event occurs
• Example: program that deletes company’s payroll records when one 

particular record is deleted
• The “particular record” is usually that of the person writing the logic bomb
• Idea is if (when) he or she is fired, and the payroll record deleted, the 

company loses all those records
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Adware

• Trojan horse that gathers information for marketing purposes and 
displays advertisements
• Often selects ads to display based on gathered information

• Believed to have originated with a company announcing it would 
make its software available for free, because it would pop up window 
advertising company
• Benign as user had to opt in
• Spread through distribution of program only
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Types of Behavior

• Low severity behavior: just display ads, don’t transmit information
• Medium severity behavior: transmits information deemed low risk, 

such as location information, and may display ads based on this
• High severity behavior: transmits personal information, and displays 

ads tailored to devices, people with those characteristic
• Typically very aggressive (annoying)
• Sometimes called madware
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Getting Adware On a System

• Put on a web site user visits
• Put it in a banner enticing the user to click on it; this installs the adware
• Page may require user to install software to view parts of web site; software 

contains adware
• If page refreshes automatically, it may direct browser to run an executable

• Usually browser notifies user via a dialog box that may require a click; on click, program 
runs and installs adware

• Some browser plug-ins download, execute files automatically; there may be 
no indication of this
• Called drive-by downloading
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Getting Adware on a System

• Put into software that user downloads
• Very common with mobile apps

• Problem: app asks for permission to carry out its tasks
• Some may be unnecessary; often hard for users to minimize permissions set
• Thus app may have access to camera, microphone, and may be able to make 

calls without going through dialing interface — and user does not realize this

• Example: survey of 900 Android apps
• 323 had unnecessary permissions
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Economic Motives

• Used to target ads that use is most likely to respond to
• Purveyors get money for every ad displayed or clicked on
• Web site owners display ads on their sites
• Developers put adware libraries in their apps
• Others take apps, modify them to include adware, and put them on 

unauthorized app stores
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Spyware

• Trojan horse that records information about the use of a computer for 
a third party
• Usually results in compromise of confidential information like keystrokes, 

passwords, credit card numbers, etc.
• Information can be stored for retrieval or sent to third party

• Put on a system the way any other malware gets onto system
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Example: Pegasus

• Designed for Apple’s iPhone, attacker sends URL to victim who clicks 
on it, triggering attack that tries to gain control of iPhone
• First sends HTML file exploiting vulnerability in WebKit
• Basis for Safari and other browsers

• This downloads software to gain control of iPhone
• Software enciphered with different keys for each download
• Includes a loader for the next stage

• Loader downloads dynamic load libraries, daemons, other software 
and installs Pegasus
• If iPhone has previously been jailbroken, removes all acess to the iPhone 

provided by the earlier break
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Example: Response to Pegasus

• Apple developed patches for the vulnerabilities exploited
• Deployed them in update to iPhone’s operating system, iOS

• Discovered when human rights activist received text messages with a 
suspicious link
• Sent messages to Citizens Lab
• Citizens Lab recognized links were associated with a manufacturer of spyware 

for government surveillance
• Lookout carried out technical analysis
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Ransomware

• Malware inhibiting use of computer, resources until a ransom is paid
• Ransom is usually monetary, and must be paid through some anonymous 

mechanism (BitCoin is popular)
• PC CYBORG (1989) altered AUTOEXEC.BAT to count number of times 

system was booted; on 90th, names of all files on main drive (C:) 
enciphered and directories hidden
• User told to send fee to post office box to recover the system

• CryptoLocker (2013) encrypted files and gave victim 100 hours to pay 
ransom; if not, encryption keys destroyed
• Used evasive techniques to make tracking more difficult
• Spread via email as attachments
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Example Protocol

Goal: Angie wants to extort money from Xavier
• Angie generates asymmetric key pair; embeds public key in malware
• She retains private key

• Malware infects Xavier’s system
• Generates symmetric key and uses that to encipher target data
• Enciphers symmetric key with public key, erases all instances of symmetric key
• Xavier sees message saying he needs to do something for Angie (usually send 

money); he does so and includes the encrypted symmetric key

• Angie then deciphers encrypted symmetric key with her private key, 
returns it to Xavier
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Phishing

• Act of impersonating legitimate entity in order to obtain information 
such as passwords or credit card information without authorization
• Usually a web site associated with a business

• Usual approach: craft a web site that looks like the legitimate one
• Send out lots of email trying to persuade people to go to that web site
• Copy their login, password, and other information for later use

• More vicious attack: fake web site passes data on to real web site, and 
sends replies back to victim
• Man-in-the-middle attack
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Example

• Heidi banks at MegaBank, with URL of https://www.megabank.com
• She receives a letter saying she needs to check her account for 

possible fraudulent activity
• Email includes link
• Link is visible as www.megabank.com
• But link actually connects to https://www.megabank.crookery.com

• Attacker records name, password, then give error
• If very clever, client is redirected to actual bank’s home page
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Spearphishing

• Phishing attack tailored for particular user
• Used to attack specific (types of) users to obtain information
• Example: some employees of a major cybersecurity company received 

email called “2011 Recruitment Plan”
• They opened an attacked spreadsheet
• This exploited a vulnerability in a supporting program to install a backdoor so 

attackers could control system remotely
• Attackers used this as a springboard to compromise other systems in the 

company’s network, and ultimately stole sensitive information
• Embarrassment, financial costs of recovery large
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Defenses

• Scanning
• Distinguishing between data, instructions
• Containing
• Specifying behavior
• Limiting sharing
• Statistical analysis
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Scanning Defenses

• Malware alters memory contents or disk files
• Compute manipulation detection code (MDC) to generate signature 

block for data, and save it
• Later, recompute MDC and compare to stored MDC
• If different, data has changed
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Example: tripwire

• File system scanner
• Initialization: it computes signature block for each file, saves it
• Signature consists of file attributes, cryptographic checksums
• System administrator selects what file attributes go into signature

• Checking file system: run tripwire
• Regenerates file signatures
• Compares them to stored file signatures and reports any differences
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Assumptions

• Files do not contain malicious logic when original signature block 
generated
• Pozzo & Grey: implement Biba’s model on LOCUS to make assumption 

explicit
• Credibility ratings assign trustworthiness numbers from 0 (untrusted) to n

(signed, fully trusted)
• Subjects have risk levels

• Subjects can execute programs with credibility ratings ≥ risk level
• If credibility rating < risk level, must use special command to run program
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Antivirus Programs

• Look for specific “malware signatures”
• If found, warn user and/or disinfect data

• At first, static sequences of bits, or patterns; now also includes 
patterns of behavior
• At first, derived manually; now usually done automatically
• Manual derivation impractical due to number of malwares
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Example: Earlybird

• System for generating worm signatures based on worm increasing network 
traffic between hosts, and this traffic has many common substrings
• When a packet arrives, its contents hashed and destination port and 

protocol identifier appended; then check hash table (called dispersion 
table) to see if this content, port, and protocol have been seen
• If yes, increment counters for source, destination addresses; if both exceed a 

threshold, content may be worm signature
• If no, run through a multistage filter that applies 4 different hashes and checks for 

those hashes in different tables; count of entry with smallest count incremented; if 
all 4 counters exceed a second threshold, make entry in dispersion table

• Found several worms before antimalware vendors distributed signatures 
for them 
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Example: Polygraph

• Assumes worm is polymorphic or metamorphic
• Generates classes of signatures, all based on substrings called tokens
• Conjunction signature: collection of tokens, matched if all tokens appear 

regardless of order
• Token-subsequence signature: like conjunction signature but tokens must 

appear in order
• Bayes signature associates a score with each token, and threshold 

with signature
• If probability of the payload as computed from token scores exceeds a 

threshold, match occurs
• Experimentally, Bayes signatures work well when there is little non-

malicious traffic, but if that’s more than 80% of network traffic, no 
worms identified
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Behavioral Analysis

• Run suspected malware in a confined area, typically a sandbox, that 
simulates environment it will execute in
• Monitor it for some time period
• Look for anything considered “bad”; if it occurs, flag this as malware
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Example: Panorama

• Loads suspected malware into a Windows system, which is itself loaded 
into Panorama and run
• Files belonging to suspect program are marked

• Test engine sends “sensitive” information to trusted application on 
Windows
• Taint engine monitors flow of information around system

• So when suspect program and trusted application run, behavior of information can 
be recorded in taint graphs

• Malware detection engine analyzes taint graphs for suspicious behavior
• Experimentally, Panorama tested against 42 malware samples, 56 benign 

samples; no false negatives, 3 false positives
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Evasion

Malware can try to ensure malicious activity not triggered in analysis 
environment
• Wait for a (relatively) long time
• Wait for a particular input or external event
• Identify malware is running in constrained environment
• Check various descriptor tables
• Run sequence of instructions that generate an exception if not in a virtual 

machine (in 2010, estimates found 2.13% of malware samples did this)
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Data vs. Instructions

• Malicious logic is both
• Virus: written to program (data); then executes (instructions)

• Approach: treat “data” and “instructions” as separate types, and 
require certifying authority to approve conversion
• Key are assumption that certifying authority will not make mistakes and 

assumption that tools, supporting infrastructure used in certifying process are 
not corrupt
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Example: Duff and UNIX

• Observation: users with execute permission usually have read 
permission, too
• So files with “execute” permission have type “executable”; those without it, 

type “data”
• Executable files can be altered, but type immediately changed to “data”

• Implemented by turning off execute permission
• Certifier can change them back

• So virus can spread only if run as certifier
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Containment

• Basis: a user (unknowingly) executes malicious logic, which then 
executes with all that user’s privileges
• Limiting accessibility of objects should limit spread of malicious logic and 

effects of its actions

• Approach draws on mechanisms for confinement
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Information Flow Metrics

• Idea: limit distance a virus can spread
• Flow distance metric fd(x):
• Initially, all information x has fd(x) = 0
• Whenever information y is shared, fd(y) increases by 1
• Whenever y1, …, yn used as input to compute z, fd(z) = max(fd(y1), …, fd(yn))

• Information x accessible if and only if for some parameter V, fd(x) < V
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Example

• Anne: VA = 3; Bill, Cathy: VB = VC = 2
• Anne creates program P containing virus
• Bill executes P
• P tries to write to Bill’s program Q; works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
• Q tries to write to Cathy’s program R; fails, as fd(Q) = 1, so fd(R) would be 2

• Problem: if Cathy executes P, R can be infected
• So, does not stop spread; slows it down greatly, though
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Implementation Issues

• Metric associated with information, not objects
• You can tag files with metric, but how do you tag the information in them?
• This inhibits sharing

• To stop spread, make V = 0
• Disallows sharing
• Also defeats purpose of multi-user systems, and is crippling in scientific and 

developmental environments
• Sharing is critical here
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Reducing Protection Domain

• Application of principle of least privilege
• Basic idea: remove rights from process so it can only perform its 

function
• Warning: if that function requires it to write, it can write anything
• But you can make sure it writes only to those objects you expect
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Example: ACLs and C-Lists

• s1 owns file f1 and s2 owns program p2 and file f3
• Suppose s1 can read, write f1, execute p2, write f3

• Suppose s2 can read, write, execute p2 and read f3

• s1 needs to run p2
• p2 contains Trojan horse

• So s1 needs to ensure p12 (subject created when s1 runs p2) can’t write to f3
• Ideally, p12 has capability { (s1, p2, x ) } so no problem

• In practice, p12 inherits s1’s rights, so it can write to f3—bad! Note s1 does not own f3, so 
can’t change its rights over f3

• Solution: restrict access by others
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Authorization Denial Subset

• Defined for each user si

• Contains ACL entries that others cannot exercise over objects si owns
• In example: R(s2) = { (s1, f3, w) }
• So when p12 tries to write to f3, as p12 owned by s1 and f3 owned by s2, system 

denies access

• Problem: how do you decide what should be in your authorization 
denial subset?
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Karger’s Scheme

• Base it on attribute of subject, object
• Interpose a knowledge-based subsystem to determine if requested 

file access reasonable
• Sits between kernel and application

• Example: UNIX C compiler
• Reads from files with names ending in “.c”, “.h”
• Writes to files with names beginning with “/tmp/ctm” and assembly files with 

names ending in “.s”

• When subsystem invoked, if C compiler tries to write to “.c” file, 
request rejected

November 8, 2021 ECS 235A, Computer and Information Security Slide 20-35



Lai and Gray

• Implemented modified version of Karger’s scheme on UNIX system
• Allow programs to access (read or write) files named on command line
• Prevent access to other files

• Two types of processes
• Trusted: no access checks or restrictions
• Untrusted: valid access list (VAL) controls access and is initialized to command 

line arguments plus any temporary files that the process creates
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File Access Requests

1. If file on VAL, use effective UID/GID of process to determine if 
access allowed

2. If access requested is read and file is world-readable, allow access
3. If process creating file, effective UID/GID controls allowing creation

• Enter file into VAL as NNA (new non-argument); set permissions so no other 
process can read file

4. Ask user. If yes, effective UID/GID controls allowing access; if no, 
deny access
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Example

• Assembler invoked from compiler
as x.s /tmp/ctm2345

and creates temp file /tmp/as1111
• VAL is

x.s /tmp/ctm2345 /tmp/as1111

• Now Trojan horse tries to copy x.s to another file
• On creation, file inaccessible to all except creating user so attacker cannot 

read it (rule 3)
• If file created already and assembler tries to write to it, user is asked (rule 4), 

thereby revealing Trojan horse 
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Trusted Programs

• No VALs applied here
• UNIX command interpreters: csh, sh
• Program that spawn them: getty, login
• Programs that access file system recursively: ar, chgrp, chown, diff, du, dump, 

find, ls, restore, tar
• Programs that often access files not in argument list: binmail, cpp, dbx, mail, 

make, script, vi
• Various network daemons: fingerd, ftpd, sendmail, talkd, telnetd, tftpd
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