Specifications

• Treat infection, execution phases of malware as errors

• Example
 • Break programs into sequences of non-branching instructions
 • Checksum each sequence, encrypt it, store it
 • When program is run, processor recomputes checksums, and at each branch compares with precomputed value; if they differ, an error has occurred
N-Version Programming

• Implement several different versions of algorithm
• Run them concurrently
 • Check intermediate results periodically
 • If disagreement, majority wins
• Assumptions
 • Majority of programs not infected
 • Underlying operating system secure
 • Different algorithms with enough equal intermediate results may be infeasible
 • Especially for malicious logic, where you would check file accesses
Inhibit Sharing

- Use separation implicit in integrity policies
- Example: LOCK keeps single copy of shared procedure in memory
 - Master directory associates unique owner with each procedure, and with each user a list of other users the first trusts
 - Before executing any procedure, system checks that user executing procedure trusts procedure owner
Multilevel Policies

• Put programs at the lowest security level, all subjects at higher levels
 • By *-property, nothing can write to those programs
 • By ss-property, anything can read (and execute) those programs

• Example: Trusted Solaris system
 • All executables, trusted data stored below user region, so user applications cannot alter them
Proof-Carrying Code

- Code consumer (user) specifies safety requirement
- Code producer (author) generates proof code meets this requirement
 - Proof integrated with executable code
 - Changing the code invalidates proof
- Binary (code + proof) delivered to consumer
- Consumer validates proof
- Example statistics on Berkeley Packet Filter: proofs 300–900 bytes, validated in 0.3 –1.3 ms
 - Startup cost higher, runtime cost considerably shorter
Detecting Statistical Changes

• Example: application had 3 programmers working on it, but statistical analysis shows code from a fourth person—may be from a Trojan horse or virus!

• Other attributes: more conditionals than in original; look for identical sequences of bytes not common to any library routine; increases in file size, frequency of writing to executables, etc.
 • Denning: use intrusion detection system to detect these
Entropy for Information Flow

• Random variables
• Joint probability
• Conditional probability
• Entropy (or uncertainty in bits)
• Joint entropy
• Conditional entropy
• Applying it to secrecy of ciphers
Random Variable

• Variable that represents outcome of an event
 • \(X \) represents value from roll of a fair die; probability for rolling \(n \): \(p(X=n) = 1/6 \)
 • If die is loaded so 2 appears twice as often as other numbers, \(p(X=2) = 2/7 \) and, for \(n \neq 2 \), \(p(X=n) = 1/7 \)

• Note: \(p(X) \) means specific value for \(X \) doesn’t matter
 • Example: all values of \(X \) are equiprobable
Joint Probability

- Joint probability of X and Y, $p(X, Y)$, is probability that X and Y simultaneously assume particular values
 - If X, Y independent, $p(X, Y) = p(X)p(Y)$
- Roll die, toss coin
 - $p(X=3, Y=\text{heads}) = p(X=3)p(Y=\text{heads}) = 1/6 \times 1/2 = 1/12$
Two Dependent Events

• $X =$ roll of red die, $Y =$ sum of red, blue die rolls

 $p(Y=2) = 1/36$ $p(Y=3) = 2/36$ $p(Y=4) = 3/36$ $p(Y=5) = 4/36$
 $p(Y=6) = 5/36$ $p(Y=7) = 6/36$ $p(Y=8) = 5/36$ $p(Y=9) = 4/36$
 $p(Y=10) = 3/36$ $p(Y=11) = 2/36$ $p(Y=12) = 1/36$

• Formula:
 $p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108$

• But if the red die (X) rolls 1, the most their sum (Y) can be is 7

• The problem is X and Y are dependent
Conditional Probability

• Conditional probability of X given Y, $p(X \mid Y)$, is probability that X takes on a particular value given Y has a particular value

• Continuing example ...
 • $p(Y=7 \mid X=1) = 1/6$
 • $p(Y=7 \mid X=3) = 1/6$
Relationship

- \(p(X, Y) = p(X \mid Y) \ p(Y) = p(X) \ p(Y \mid X) \)
- **Example:**
 \[
 p(X=3,Y=8) = p(X=3 \mid Y=8) \ p(Y=8) = (1/5)(5/36) = 1/36
 \]
- **Note:** if \(X, Y \) independent:
 \[
 p(X \mid Y) = p(X)
 \]
Entropy

• Uncertainty of a value, as measured in bits
• Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
 • Therefore entropy of X is $H(X) = 1$
• Formal definition: random variable X, values x_1, \ldots, x_n; so $\sum_i p(X = x_i) = 1$; then entropy is:
 $$H(X) = -\sum_i p(X=x_i) \log p(X=x_i)$$
Heads or Tails?

• $H(X) = - p(X=\text{heads}) \lg p(X=\text{heads}) - p(X=\text{tails}) \lg p(X=\text{tails})$

 $= - (1/2) \lg (1/2) - (1/2) \lg (1/2)$

 $= - (1/2) (-1) - (1/2) (-1) = 1$

• Confirms previous intuitive result
n-Sided Fair Die

$$H(X) = -\sum_i p(X = x_i) \lg p(X = x_i)$$

As $p(X = x_i) = 1/n$, this becomes

$$H(X) = -\sum_i (1/n) \lg (1/n) = -n(1/n) (-\lg n)$$

so

$$H(X) = \lg n$$

which is the number of bits in n, as expected
Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

\(W \) represents the winner. What is its entropy?

- \(w_1 = \text{Ann}, \ w_2 = \text{Pam}, \ w_3 = \text{Paul} \)
- \(p(W=w_1) = p(W=w_2) = 2/5, \ p(W=w_3) = 1/5 \)

So \(H(W) = -\sum_i p(W=w_i) \lg p(W=w_i) \)

\[
= -(2/5) \lg (2/5) - (2/5) \lg (2/5) - (1/5) \lg (1/5)
\]

\[
= -(4/5) + \lg 5 \approx -1.52
\]

- If all equally likely to win, \(H(W) = \lg 3 \approx 1.58 \)
Joint Entropy

- X takes values from $\{ x_1, \ldots, x_n \}$, and $\sum_i p(X=x_i) = 1$
- Y takes values from $\{ y_1, \ldots, y_m \}$, and $\sum_i p(Y=y_i) = 1$
- Joint entropy of X, Y is:
 $$H(X, Y) = -\sum_j \sum_i p(X=x_i, Y=y_j) \log p(X=x_i, Y=y_j)$$
Example

X: roll of fair die, Y: flip of coin

As X, Y are independent:

$$p(X=1, Y=\text{heads}) = p(X=1) \cdot p(Y=\text{heads}) = \frac{1}{12}$$

and

$$H(X, Y) = -\sum_j \sum_i p(X=x_i, Y=y_j) \log p(X=x_i, Y=y_j)$$

$$= -2 \left[6 \left(\frac{1}{12} \log \frac{1}{12} \right) \right] = \log 12$$
Conditional Entropy (Equivocation)

- X takes values from $\{x_1, \ldots, x_n\}$ and $\sum_i p(X=x_i) = 1$
- Y takes values from $\{y_1, \ldots, y_m\}$ and $\sum_i p(Y=y_i) = 1$
- Conditional entropy of X given $Y=y_j$ is:
 $$H(X \mid Y=y_j) = -\sum_i p(X=x_i \mid Y=y_j) \log p(X=x_i \mid Y=y_j)$$
- Conditional entropy of X given Y is:
 $$H(X \mid Y) = -\sum_j p(Y=y_j) \sum_i p(X=x_i \mid Y=y_j) \log p(X=x_i \mid Y=y_j)$$
Example

• X roll of red die, Y sum of red, blue roll
• Note $p(X=1 \mid Y=2) = 1$, $p(X=i \mid Y=2) = 0$ for $i \neq 1$
 • If the sum of the rolls is 2, both dice were 1
• Thus

 $$H(X \mid Y=2) = -\sum_i p(X=x_i \mid Y=2) \log p(X=x_i \mid Y=2) = 0$$
Example (con’t)

• Note $p(X=i, Y=7) = 1/6$
 • If the sum of the rolls is 7, the red die can be any of 1, ..., 6 and the blue die
 must be 7—roll of red die
• $H(X \mid Y=7) = -\sum_i p(X=x_i \mid Y=7) \lg p(X=x_i \mid Y=7)$
 $= -6 \left(\frac{1}{6}\right) \lg \left(\frac{1}{6}\right) = \lg 6$
Example: Perfect Secrecy

• Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
• $M = \{ m_1, ..., m_n \}$ set of messages
• $C = \{ c_1, ..., c_n \}$ set of messages
• Cipher $c_i = E(m_i)$ achieves perfect secrecy if $H(M \mid C) = H(M)$
Basics of Information Flow

• Bell-LaPadula Model embodies information flow policy
 • Given compartments A, B, info can flow from A to B iff $B \text{ dom } A$

• So does Biba Model
 • Given compartments A, B, info can flow from A to B iff $A \text{ dom } B$

• Variables x, y assigned compartments x, y as well as values
 • Confidentiality (Bel-LaPadula): if $x = A$, $y = B$, and $B \text{ dom } A$, then $y := x$ allowed but not $x := y$
 • Integrity (Biba): if $x = A$, $y = B$, and $A \text{ dom } B$, then $x := y$ allowed but not $y := x$

• For now, focus on confidentiality (Bell-LaPadula)
 • We’ll get to integrity later
Entropy and Information Flow

• Idea: information flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c

• Formally:
 • s time before execution of c, t time after
 • $H(x_s \mid y_t) < H(x_s \mid y_s)$
 • If no y at time s, then $H(x_s \mid y_t) < H(x_s)$
Example 1

• Command is $x := y + z$; where:
 • x does not exist initially (that is, has no value)
 • $0 \leq y \leq 7$, equal probability
 • $z = 1$ with probability $1/2$, $z = 2$ or 3 with probability $1/4$ each

• s state before command executed; t, after; so
 • $H(y_s) = H(y_t) = -8(1/8) \log_2 (1/8) = 3$

• You can show that $H(y_s \mid x_t) = (3/32) \log_3 3 + 9/8 \approx 1.274 < 3 = H(y_s)$
 • Thus, information flows from y to x
Example 2

• Command is

\[
\text{if } x = 1 \text{ then } y := 0 \text{ else } y := 1;
\]

where \(x, y \) equally likely to be either 0 or 1

• \(H(x_s) = 1 \) as \(x \) can be either 0 or 1 with equal probability

• \(H(x_s \mid y_t) = 0 \) as if \(y_t = 1 \) then \(x_s = 0 \) and vice versa
 • Thus, \(H(x_s \mid y_t) = 0 < 1 = H(x_s) \)

• So information flowed from \(x \) to \(y \)
Implicit Flow of Information

• Information flows from \(x \) to \(y \) without an \textit{explicit} assignment of the form \(y := f(x) \)
 • \(f(x) \) an arithmetic expression with variable \(x \)
• Example from previous slide:
 \[
 \text{if } x = 1 \text{ then } y := 0 \text{ else } y := 1;
 \]
• So must look for implicit flows of information to analyze program
Notation

• x means class of x
 • In Bell-LaPadula based system, same as “label of security compartment to which x belongs”

• $x \leq y$ means “information can flow from an element in class of x to an element in class of y”
 • Or, “information with a label placing it in class x can flow into class y”
Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
 - If a flow could violate policy (but may not), it is unauthorized
 - No unauthorized path along which information could flow remains undetected
- Set of statements certified with respect to information flow policy if flows in set of statements do not violate that policy
Example

```java
if \ x = 1 \ then \ y := a;
else \ y := b;
```

• Information flows from \(x\) and \(a\) to \(y\), or from \(x\) and \(b\) to \(y\)

• Certified only if \(x \leq y\) and \(a \leq y\) and \(b \leq y\)
 • Note flows for both branches must be true unless compiler can determine that one branch will never be taken
Declarations

• Notation:

\[x: \text{int class } \{ \text{A, B} \} \]

means \(x \) is an integer variable with security class at least \(\text{lub}\{\text{A, B}\} \), so \(\text{lub}\{\text{A, B}\} \leq x \)

• Distinguished classes \(\text{Low, High} \)
 • Constants are always \(\text{Low} \)
Input Parameters

- Parameters through which data passed into procedure
- Class of parameter is class of actual argument

\[i_p: \text{type class} \{ i_p \} \]
Output Parameters

- Parameters through which data passed out of procedure
 - If data passed in, called input/output parameter
- As information can flow from input parameters to output parameters, class must include this:

 \[o_p: \text{type class} \{ r_1, \ldots, r_n \} \]

where \(r_i \) is class of \(i \)th input or input/output argument
Example

\texttt{proc sum}(x: int class \{ A \};
\quad \texttt{var out: int class \{ A, B \});
begin
\quad \texttt{out := out + x;}
end;
\textbullet \text{ Require } x \leq \texttt{out} \text{ and } \texttt{out} \leq \texttt{out}
Array Elements

• Information flowing out:
 \[... := a[i] \]
 Value of \(i \), \(a[i] \) both affect result, so class is \(\text{lub\{ a[i], i \} } \)

• Information flowing in:
 \[a[i] := ... \]

• Only value of \(a[i] \) affected, so class is \(a[i] \)
Assignment Statements

\[x := y + z; \]

- Information flows from \(y, z \) to \(x \), so this requires \(\text{lub}\{ y, z \} \leq x \)

More generally:

\[y := f(x_1, \ldots, x_n) \]

- the relation \(\text{lub}\{ x_1, \ldots, x_n \} \leq y \) must hold
Compound Statements

$x := y + z; a := b \times c - x$

• First statement: $\text{lub}\{y, z\} \leq x$
• Second statement: $\text{lub}\{b, c, x\} \leq a$
• So, both must hold (i.e., be secure)

More generally:

$S_1; \ldots; S_n;$

• Each individual S_i must be secure
Conditional Statements

if \(x + y < z \) then \(a := b \) else \(d := b \times c - x \); end

• Statement executed reveals information about \(x, y, z \), so \(\text{lub}\{ x, y, z \} \leq \text{glb}\{ a, d \} \)

More generally:

if \(f(x_1, \ldots, x_n) \) then \(S_1 \) else \(S_2 \); end

• \(S_1, S_2 \) must be secure
• \(\text{lub}\{ x_1, \ldots, x_n \} \leq \text{glb}\{ y \mid y \text{ target of assignment in } S_1, S_2 \} \)
Iterative Statements

while $i < n$ do begin $a[i] := b[i]$; $i := i + 1$; end

• Same ideas as for “if”, but must terminate

More generally:
while $f(x_1, \ldots, x_n)$ do S;

• Loop must terminate;
• S must be secure
• lub\{x_1, \ldots, x_n\} \leq glb\{$y \mid y$ target of assignment in S \}
Goto Statements

• No assignments
 • Hence no explicit flows

• Need to detect implicit flows

• Basic block is sequence of statements that have one entry point and one exit point
 • Control in block always flows from entry point to exit point