
ECS 235A, Computer and Information Security Fall Quarter 2021

Term Project

Why a Project?
This course covers a very large discipline, and—perhaps more so than many other areas of computer science—the
discipline of computer security runs through many other areas. Because the class has a very limited amount of time,
we will only touch the surface of many topics. The project is to give you an opportunity to explore one of these topics,
or some other area or application of computer security that interests you, in some depth.

The Ground Rules
The project can be a detailed research paper or survey, or a programming project. Please select something that interests
you!

You may work individually, or in groups of up to 3 people (if you want to have more than 3, please come see us
first). Of course, the larger the group, the more we will expect from it.

What Is Due and When
Please submit the following on the dates indicated:
• Project selection: due on Friday, October 8; 10% of project score. Submit a write-up with your team members

consisting of a one-line title of your project, a one-paragraph description, and the names of all team members. If
you’re doing a programming project, state the problem you want to solve and the requirements for a solution.

• Progress report: due on Friday, November 5; 20% of project score. Submit a one-page progress report, and a
bibliography of references that you have used or plan to use.

• Completed project: due on Tuesday, December 7 at 3:00pm (this is the date and time of the final examination);
70% of your project score. Turn in your final project.

In all cases, submit the project to Canvas as described in All About Homework. If a team has multiple members, only
one need submit the material, and the others simply submit a note saying who submitted the final project.

Some Suggestions for Project and Report Topics
Below are some suggestions for projects. If you pick one of these, you will need to refine it or limit the scope of your
project. You may also think of a project on your own.

Projects Suggested by the Campus Information Security Office

These have been suggested by the campus Information Security Office and will require working with members of that
office. I will be happy to connect you with the appropriate people there.
• Risk-based decision making. Can we make an optimal decision using a risk model that incorporates value, severity,

impact, cost and likelihood? Design a risk model that incorporates value, severity, impact, cost, and likelihood to
help decision makers make optimal decisions.

• Implement connection log or packet sanitization techniques, and determine the effect of the transformation on the
analysis of the logs or packets

• Develop a scheme to automatically classify web service types for TLS traffic streams
• Validate the configuration of a secure virtual cloud (using AWS)
• Monitor cloud security assuming network packet traffic is not available
• Determine how to analyze the effectiveness of an email awareness campaign, and apply it (this will require some

social science experience)
• Develop honeypots or honeytokens to detect and ideally disrupt malicious email campaigns
• Use dynamic distributed network honeypots to deceive attackers and/or disrupt attacks
• Use medium interaction honeypots emulating lateral movement to deceive attackers
• Deceive attackers using honeytokens such as deceptive accounts, DB tables, personas
• Zero Trust complexity; can we derive a configuration complexity measure for a given Zero Trust environment.
• Derive a configuration complexity measure for a given Zero Trust environment.
• Determine how to identify compromised accounts using behavioral anomalies?
• Conduct a penetration test on the development or test environment of a campus system. Do not do this without the

approval of the Information Security Office!
• Open source software risk assessment; use static analysis tools to find security flaws and assess risk in open source

software systems.

Version of September 19, 2022 at 11:25am Page 1 of 2



ECS 235A, Computer and Information Security Fall Quarter 2021

• Use static analysis tools to find security flaws and assess risk in open source software systems.

Other Projects

• High assurance programming: design, write, and implement a program for the GEMSOS system (we have one in
the Security Lab)

• Create a front-end to LLVM that accepts Pascal, and a back end that produces segments and ring control suitable
for GEMSOS (this is a time-consuming project!)

• Develop a DNS server that replicates data among many different copies, so that the DNS can function properly in
the face of a denial of service attack.

• Use a process modeling language such as Little JIL or UML to derive the security requirements for computers
used in some workflow, such as elections.

• Analyze some aspect of the insider problem, such as the supply chain problem, to detect potential points of attack,
and identify and assess possible remediations.

• Analyze one of the open source SDN implementations for potential vulnerabilities. Define your threat model, your
assumptions about the environment, and describe the effects of your potential attacks.

• Examine the question of licensure, certification, and liability in the context of software security. What would be
necessary for these to force improvement of software creation and distribution?

• Develop a wrapper that checks for non-secure inputs (from the user, from the network, or as returned values from
system calls) and a language in which to express what “non-secure inputs” means. Compare this to a jail and other
restricted environments. What attacks does your wrapper stop that other restrictive environments do not?

• Implement a front-end to a compiler (or modify the compiler) to detect potential race conditions. If such a condition
depends upon the execution environment (such as inputs or file names) that cannot be validated at compile time,
generate code to check at run time. Compare this with other approaches to solving the race condition.

• Implement a proxy that checks the digital signature of signed executables. If there is no digital signature from
a trusted source, embed the executable in a wrapper that will warn the user when the executable tries to access
sensitive resources or is given escalated privileges. You will have to define, or otherwise specify, what entities are
“trusted sources” and “sensitive resources”.

• Choose an Internet protocol and analyze it with respect to specific security requirements. Justify your selection of
requirements as well as your analysis.

• Perform a source code analysis of an open-source project. State the conditions under which any vulnerabilities
you find are exploitable, and what the effects of such exploits are.

• Develop a “compiler” that will take a policy language (such as Ponder or DTEL) as input, and produce the config-
uration changes needed for a system to enforce that policy. You should choose a type of system (Linux, FreeBSD,
MacOS, Windows) that you know well.

• Given a system, reverse engineer its configuration and other settings into a high-level security policy language, or
into a natural language statement of the policy that the system enforces.

Version of September 19, 2022 at 11:25am Page 2 of 2


