Homework 2

Due: October 21, 2022

Points: 100

- 1. (20 points) An affine cipher has the form $c = (am + b) \mod n$. Suppose *m* is an integer between 0 and 25, each integer representing a letter.
 - (a) Let n = 26, a = 3, and b = 123. What is the ciphertext corresponding to the phrase THIS IS A CIPHER MESSAGE.
 - (b) A requirement for a cipher is that every plaintext letter correspond to a different ciphertext letter. If either *a* and *b* is not relatively prime to *n*, does the affine cipher meet this property? Either prove it does or present a counterexample.
- 2. (20 points) Alice and Bob are creating RSA public keys. They select different moduli n_{Alice} and n_{Bob} . Unknown to both, n_{Alice} and n_{Bob} have a common factor.
 - (a) How could Eve determine that n_{Alice} and n_{Bob} have a common factor without factoring those moduli?
 - (b) Having determined that factor, show how Eve can now obtain the private keys of both Alice and Bob.
- 3. (20 points) Needham and Schroeder suggest the following variant of their protocol:
 - 1. Alice \rightarrow Bob : Alice
 - 2. Bob \rightarrow Alice : {Alice | *rand*₃ } k_{Bob}
 - 3. Alice \rightarrow Cathy : {Alice|Bob|*rand*₁|{Alice|*rand*₃} k_{Bob} }
 - 4. Cathy \rightarrow Alice : {Alice|Bob|*rand*₁|*k*_{session}|{Alice|*rand*₃|*k*_{session}}*k*_{Bob}}*k*_{Alice}
 - 5. Alice \rightarrow Bob : {Alice | rand_3 | k_{session} \} k_{Bob}
 - 6. Bob \rightarrow Alice : {*rand*₂} $k_{session}$
 - 7. Alice \rightarrow Bob : { $rand_2 1$ } $k_{session}$

Show that this protocol solves the problem of replay as a result of stolen session keys. *Hint:* Consider two cases, one in which the attacker does not send an initial message to Bob and one in which the attacker does.

- 4. (20 points) Does using passwords with salts make attacking a specific account more difficult than using passwords without salts? Explain why or why not.
- 5. (20 points) Suppose a user wishes to edit the file *xyzzy* in a capability-based system. How can he be sure that the editor cannot access any other file? Could this be done in an ACL-based system? If so, how? If not, why not?