Lecture 2
September 23, 2022
Design Principles

• Simplicity, restriction
• Principles
 • Least Privilege
 • Fail-Safe Defaults
 • Economy of Mechanism
 • Complete Mediation
 • Open Design
 • Separation of Privilege
 • Least Common Mechanism
 • Least Astonishment
Overview

• Simplicity
 • Less to go wrong
 • Fewer possible inconsistencies
 • Easy to understand

• Restriction
 • Minimize access
 • Inhibit communication
Least Privilege

• A subject should be given only those privileges necessary to complete its task
 • Function, not identity, controls
 • Rights added as needed, discarded after use
 • Minimal protection domain
Related: Least Authority

• Principle of Least Authority (POLA)
 • Often considered the same as Principle of Least Privilege
 • Some make distinction:
 • Permissions control what subject can do to an object directly
 • Authority controls what influence a subject has over an object (directly or indirectly, through other subjects)
Fail-Safe Defaults

• Default action is to deny access
• If action fails, system as secure as when action began
Economy of Mechanism

• Keep it as simple as possible
 • KISS Principle

• Simpler means less can go wrong
 • And when errors occur, they are easier to understand and fix

• Interfaces and interactions
Complete Mediation

• Check every access
• Usually done once, on first action
 • UNIX: access checked on open, not checked thereafter
• If permissions change after, may get unauthorized access
Open Design

• Security should not depend on secrecy of design or implementation
 • Popularly misunderstood to mean that source code should be public
 • “Security through obscurity”
 • Does not apply to information such as passwords or cryptographic keys
Separation of Privilege

• Require multiple conditions to grant privilege
 • Separation of duty
 • Defense in depth
Least Common Mechanism

• Mechanisms should not be shared
 • Information can flow along shared channels
 • Covert channels

• Isolation
 • Virtual machines
 • Sandboxes
Least Astonishment

• Security mechanisms should be designed so users understand why the mechanism works the way it does, and using mechanism is simple
 • Hide complexity introduced by security mechanisms
 • Ease of installation, configuration, use
 • Human factors critical here
Related: Psychological Acceptability

• Security mechanisms should not add to difficulty of accessing resource
 • Idealistic, as most mechanisms add some difficulty
 • Even if only remembering a password
 • Principle of Least Astonishment accepts this
 • Asks whether the difficulty is unexpected or too much for relevant population of users
Key Points

• Principles of secure design underlie all security-related mechanisms

• Require:
 • Good understanding of goal of mechanism and environment in which it is to be used
 • Careful analysis and design
 • Careful implementation
Security Policy

• Policy partitions system states into:
 • Authorized (secure)
 • These are states the system can enter
 • Unauthorized (nonsecure)
 • If the system enters any of these states, it’s a security violation

• Secure system
 • Starts in authorized state
 • Never enters unauthorized state
Confidentiality

• X set of entities, I information
• I has the *confidentiality* property with respect to X if no $x \in X$ can obtain information from I
• I can be disclosed to others
• Example:
 • X set of students
 • I final exam answer key
 • I is confidential with respect to X if students cannot obtain final exam answer key
Integrity

• X set of entities, I information

• I has the *integrity* property with respect to X if all $x \in X$ trust information in I

• Types of integrity:
 • Trust I, its conveyance and protection (data integrity)
 • I information about origin of something or an identity (origin integrity, authentication)
 • I resource: means resource functions as it should (assurance)
Availability

- X set of entities, I resource
- I has the *availability* property with respect to X if all $x \in X$ can access I
- Types of availability:
 - Traditional: x gets access or not
 - Quality of service: promised a level of access (for example, a specific level of bandwidth); x meets it or not, even though some access is achieved
Policy Models

• Abstract description of a policy or class of policies
• Focus on points of interest in policies
 • Security levels in multilevel security models
 • Separation of duty in Clark-Wilson model
 • Conflict of interest in Chinese Wall model
Mechanisms

- Entity or procedure that enforces some part of the security policy
 - Access controls (like bits to prevent someone from reading a homework file)
 - Disallowing people from bringing CDs and floppy disks into a computer facility to control what is placed on systems
Question

• Policy disallows cheating
 • Includes copying homework, with or without permission
• CS class has students do homework on computer
• Anne forgets to read-protect her homework file
• Bill copies it
• Who breached security?
 • Anne, Bill, or both?
Answer Part 1

• Bill clearly breached security
 • Policy forbids copying homework assignment
 • Bill did it
 • System entered unauthorized state (Bill having a copy of Anne’s assignment)

• If not explicit in computer security policy, certainly implicit
 • Not credible that a unit of the university allows something that the university as a whole forbids, unless the unit explicitly says so
Answer Part 2

• Anne didn’t protect her homework
 • Not required by security policy
• She didn’t breach security
• If policy said students had to read-protect homework files, then Anne did breach security
 • She didn’t do this
Types of Security Policies

• Military (governmental) security policy
 • Policy primarily protecting confidentiality

• Commercial security policy
 • Policy primarily protecting integrity

• Confidentiality policy
 • Policy protecting only confidentiality

• Integrity policy
 • Policy protecting only integrity