Lecture 6
October 3, 2022
UNIX Implementation

- Considered “allowed” relation
 \[(\text{user}, \text{TP}, \{\text{CDI set}\})\]
- Each TP is owned by a different user
 - These “users” are actually locked accounts, so no real users can log into them; but this provides each TP a unique UID for controlling access rights
 - TP is setuid to that user
- Each TP’s group contains set of users authorized to execute TP
- Each TP is executable by group, not by world
CDI Arrangement

• CDIs owned by *root* or some other unique user
 • Again, no logins to that user’s account allowed
• CDI’s group contains users of TPs allowed to manipulate CDI
• Now each TP can manipulate CDIs for single user
Examples

• Access to CDI constrained by user
 • In “allowed” triple, TP can be any TP
 • Put CDIs in a group containing all users authorized to modify CDI

• Access to CDI constrained by TP
 • In “allowed” triple, $user$ can be any user
 • CDIs allow access to the owner, the user owning the TP
 • Make the TP world executable
Problems

• 2 different users cannot use same copy of TP to access 2 different CDIs
 • Need 2 separate copies of TP (one for each user and CDI set)
• TPs are setuid programs
 • As these change privileges, want to minimize their number
• root can assume identity of users owning TPs, and so cannot be separated from certifiers
 • No way to overcome this without changing nature of root
Cryptosystem

• Quintuple \((E, D, M, K, C)\)
 • \(M\) set of plaintexts
 • \(K\) set of keys
 • \(C\) set of ciphertexts
 • \(E\) set of encryption functions \(e: M \times K \rightarrow C\)
 • \(D\) set of decryption functions \(d: C \times K \rightarrow M\)
Example

• Example: Cæsar cipher
 • \(M = \{ \text{sequences of letters} \} \)
 • \(K = \{ i \mid i \text{ is an integer and } 0 \leq i \leq 25 \} \)
 • \(E = \{ E_k \mid k \in K \text{ and for all letters } m, E_k(m) = (m + k) \mod 26 \} \)
 • \(D = \{ D_k \mid k \in K \text{ and for all letters } c, D_k(c) = (26 + c - k) \mod 26 \} \)
 • \(C = M \)
Attacks

• Opponent whose goal is to break cryptosystem is the adversary
 • Assume adversary knows algorithm used, but not key

• Three types of attacks:
 • ciphertext only: adversary has only ciphertext; goal is to find plaintext, possibly key
 • known plaintext: adversary has ciphertext, corresponding plaintext; goal is to find key
 • chosen plaintext: adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key
Basis for Attacks

• Mathematical attacks
 • Based on analysis of underlying mathematics

• Statistical attacks
 • Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), etc.
 • Called models of the language
 • Examine ciphertext, correlate properties with the assumptions.
Symmetric Cryptography

- Sender, receiver share common key
 - Keys may be the same, or trivial to derive from one another
 - Sometimes called *secret key cryptography*

- Two basic types
 - Transposition ciphers
 - Substitution ciphers
 - Combinations are called *product ciphers*
Transposition Cipher

• Rearrange letters in plaintext to produce ciphertext

• Example (Rail-Fence Cipher)
 • Plaintext is HELLO WORLD
 • Rearrange as
 HLOOL
 ELWRD
 • Ciphertext is HLOOL ELWRD
Attacking the Cipher

• Anagramming
 • If 1-gram frequencies match English frequencies, but other n-gram frequencies do not, probably transposition
 • Rearrange letters to form n-grams with highest frequencies
Example

• Ciphertext: HLOOLELWRD

• Frequencies of 2-grams beginning with H
 • HE 0.0305
 • HO 0.0043
 • HL, HW, HR, HD < 0.0010

• Frequencies of 2-grams ending in H
 • WH 0.0026
 • EH, LH, OH, RH, DH ≤ 0.0002

• Implies E follows H
Example

• Arrange so the H and E are adjacent

 HE
 LL
 OW
 OR
 LD

• Read across, then down, to get original plaintext
Substitution Ciphers

• Change characters in plaintext to produce ciphertext

• Example (Caesar cipher)
 • Plaintext is HELLO WORLD
 • Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 • Key is 3, usually written as letter ‘D’
 • Ciphertext is KHOOR ZRUOG
Attacking the Cipher

• Exhaustive search
 • If the key space is small enough, try all possible keys until you find the right one
 • Caesar cipher has 26 possible keys

• Statistical analysis
 • Compare to 1-gram model of English
Statistical Attack

• Compute frequency of each letter in ciphertext:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>0.1</td>
</tr>
<tr>
<td>H</td>
<td>0.1</td>
</tr>
<tr>
<td>K</td>
<td>0.1</td>
</tr>
<tr>
<td>O</td>
<td>0.3</td>
</tr>
<tr>
<td>R</td>
<td>0.2</td>
</tr>
<tr>
<td>U</td>
<td>0.1</td>
</tr>
<tr>
<td>Z</td>
<td>0.1</td>
</tr>
</tbody>
</table>

• Apply 1-gram model of English

 • Frequency of characters (1-grams) in English is on next slide
Character Frequencies

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.07984</td>
</tr>
<tr>
<td>h</td>
<td>0.06384</td>
</tr>
<tr>
<td>n</td>
<td>0.06876</td>
</tr>
<tr>
<td>t</td>
<td>0.09058</td>
</tr>
<tr>
<td>b</td>
<td>0.01511</td>
</tr>
<tr>
<td>i</td>
<td>0.07000</td>
</tr>
<tr>
<td>o</td>
<td>0.07691</td>
</tr>
<tr>
<td>u</td>
<td>0.02844</td>
</tr>
<tr>
<td>c</td>
<td>0.02504</td>
</tr>
<tr>
<td>j</td>
<td>0.00131</td>
</tr>
<tr>
<td>p</td>
<td>0.01741</td>
</tr>
<tr>
<td>v</td>
<td>0.01056</td>
</tr>
<tr>
<td>d</td>
<td>0.04260</td>
</tr>
<tr>
<td>k</td>
<td>0.00741</td>
</tr>
<tr>
<td>q</td>
<td>0.00107</td>
</tr>
<tr>
<td>w</td>
<td>0.02304</td>
</tr>
<tr>
<td>e</td>
<td>0.12452</td>
</tr>
<tr>
<td>l</td>
<td>0.03961</td>
</tr>
<tr>
<td>r</td>
<td>0.05912</td>
</tr>
<tr>
<td>x</td>
<td>0.00159</td>
</tr>
<tr>
<td>f</td>
<td>0.02262</td>
</tr>
<tr>
<td>m</td>
<td>0.02629</td>
</tr>
<tr>
<td>s</td>
<td>0.06333</td>
</tr>
<tr>
<td>y</td>
<td>0.02028</td>
</tr>
<tr>
<td>g</td>
<td>0.02013</td>
</tr>
<tr>
<td>z</td>
<td>0.00057</td>
</tr>
</tbody>
</table>
Statistical Analysis

• $f(c)$ frequency of character c in ciphertext

• $\varphi(i)$ correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is i

 • $\varphi(i) = \sum_{0 \leq c \leq 25} f(c)p(c - i)$ so here,

 $\varphi(i) = 0.1 \ p(6 - i) + 0.1 \ p(7 - i) + 0.1 \ p(10 - i) + 0.3 \ p(14 - i) + 0.2 \ p(17 - i) +$

 $0.1 \ p(20 - i) + 0.1 \ p(25 - i)$

 • $p(x)$ is frequency of character x in English
Correlation: $\varphi(i)$ for $0 \leq i \leq 25$

<table>
<thead>
<tr>
<th>i</th>
<th>$\varphi(i)$</th>
<th>i</th>
<th>$\varphi(i)$</th>
<th>i</th>
<th>$\varphi(i)$</th>
<th>i</th>
<th>$\varphi(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0469</td>
<td>7</td>
<td>0.0461</td>
<td>13</td>
<td>0.0505</td>
<td>19</td>
<td>0.0312</td>
</tr>
<tr>
<td>1</td>
<td>0.0393</td>
<td>8</td>
<td>0.0194</td>
<td>14</td>
<td>0.0561</td>
<td>20</td>
<td>0.0287</td>
</tr>
<tr>
<td>2</td>
<td>0.0396</td>
<td>9</td>
<td>0.0286</td>
<td>15</td>
<td>0.0215</td>
<td>21</td>
<td>0.0526</td>
</tr>
<tr>
<td>3</td>
<td>0.0586</td>
<td>10</td>
<td>0.0631</td>
<td>16</td>
<td>0.0306</td>
<td>22</td>
<td>0.0398</td>
</tr>
<tr>
<td>4</td>
<td>0.0259</td>
<td>11</td>
<td>0.0280</td>
<td>17</td>
<td>0.0386</td>
<td>23</td>
<td>0.0338</td>
</tr>
<tr>
<td>5</td>
<td>0.0165</td>
<td>12</td>
<td>0.0318</td>
<td>18</td>
<td>0.0317</td>
<td>24</td>
<td>0.0320</td>
</tr>
<tr>
<td>6</td>
<td>0.0676</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>0.0443</td>
</tr>
</tbody>
</table>
The Result

• Most probable keys, based on φ:
 • $i = 6$, $\varphi(i) = 0.0676$
 • plaintext EBIIL TLOLA
 • $i = 10$, $\varphi(i) = 0.0631$
 • plaintext AXEEH PHKEW
 • $i = 14$, $\varphi(i) = 0.0561$
 • plaintext WTAAD LDGAS
 • $i = 3$, $\varphi(i) = 0.0586$
 • plaintext HELLO WORLD

• Only English phrase is for $i = 3$
 • That’s the key (3 or ‘D’)

October 3, 2022 ECS 235A, Computer and Information Security
Caesar’s Problem

• Key is too short
 • Can be found by exhaustive search
 • Statistical frequencies not concealed well
 • They look too much like regular English letters

• So make it longer
 • Multiple letters in key
 • Idea is to smooth the statistical frequencies to make cryptanalysis harder
Vigènere Cipher

• Like Caesar cipher, but use a phrase
 • So it’s effectively multiple Caesar ciphers

• Example
 • Message A LIMERICK PACKS LAUGHS ANATOMICAL
 • Key BENCH
 • Encipher using Caesar cipher for each letter:
 key BENCHBENCHBENCHBENCHBENCHBENCH
 plain ALIMERICKPACKSALUGHSANATOMICAL
 cipher BPVOLSMPMWBGXUSBYTJZBRNVVNMPCS
Relevant Parts of Tableau

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>H</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
<td>E</td>
<td>H</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>E</td>
<td>G</td>
<td>J</td>
<td>P</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>G</td>
<td>I</td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
<td>K</td>
<td>N</td>
<td>T</td>
</tr>
<tr>
<td>H</td>
<td>I</td>
<td>J</td>
<td>L</td>
<td>O</td>
<td>U</td>
</tr>
<tr>
<td>I</td>
<td>J</td>
<td>K</td>
<td>M</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>W</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>Z</td>
</tr>
<tr>
<td>M</td>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>A</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>B</td>
</tr>
<tr>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>E</td>
</tr>
<tr>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>F</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>G</td>
</tr>
<tr>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>Y</td>
<td>H</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td>Y</td>
<td>B</td>
<td>H</td>
</tr>
</tbody>
</table>

- Tableau shown has relevant rows, columns only
 - Columns correspond to letters from the key
 - Rows correspond to letters from the message
- Example encipherments:
 - Key B, letter R: follow B column down to R row (giving “S”)
 - Key H, letter L: follow H column down to L row (giving “S”)
Useful Terms

• *period*: length of key
 • In earlier example, period is 3

• *tableau*: table used to encipher and decipher
 • Vigènere cipher has key letters on top, plaintext letters on the left

• *polyalphabetic*: the key has several different letters
 • Caesar cipher is monoalphabetic
Attacking the Cipher

• Approach
 • Establish period; call it n
 • Break message into n parts, each part being enciphered using the same key letter
 • Solve each part; you can leverage one part from another

• We will show each step
The Target Cipher

• We want to break this cipher:

 ADQYS MIUSB OXKKT MIBHK IZOOO EQOOG IFBAG KAUMF
 VVTAA CIDTW MOCIO EQOOG BMBFV ZGGWP CIEKQ HSNEW
 VECNE DLAAV RWKXS VNSVP HCEUT QOIOF MEGJS WTPCH
 AJMOC HIUIX
Establish Period

• Kaskski: *repetitions in the ciphertext occur when characters of the key appear over the same characters in the plaintext*

• Example:

 key VIGVIGVIGVIGVIGVIGV
 plain THEBOYHASTHEBALL
 cipher OPKWWECIYOPKWIRG

Note the key and plaintext line up over the repetitions (underlined). As distance between repetitions is 9, the period is a factor of 9 (that is, 1, 3, or 9)
Repetitions in Example

<table>
<thead>
<tr>
<th>Letters</th>
<th>Start</th>
<th>End</th>
<th>Gap Length</th>
<th>Gap Length Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEQOOG</td>
<td>24</td>
<td>54</td>
<td>30</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>MOC</td>
<td>50</td>
<td>122</td>
<td>72</td>
<td>2, 2, 2, 3, 3</td>
</tr>
</tbody>
</table>
Estimate of Period

- OEQOOG is probably not a coincidence
 - It’s too long for that
 - Period may be 1, 2, 3, 5, 6, 10, 15, or 30
- MOC is also probably not a coincidence
 - Period may be 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, or 72
- Period of 2 or 3 is probably too short (but maybe not)
- Begin with period of 6
Check on Period

- Index of coincidence is probability that two randomly chosen letters from ciphertext will be the same.
- Tabulated for different periods:

<table>
<thead>
<tr>
<th>Period</th>
<th>Index of Coincidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0660</td>
</tr>
<tr>
<td>2</td>
<td>0.0520</td>
</tr>
<tr>
<td>3</td>
<td>0.0473</td>
</tr>
<tr>
<td>6</td>
<td>0.0427</td>
</tr>
</tbody>
</table>
Compute IC for an Alphabet

- $\text{IC} = \frac{1}{n(n-1)} \sum_{0 \leq i \leq 25} [F_i(F_i - 1)]$
 - where n is length of ciphertext and F_i the number of times character i occurs in ciphertext

- For the given ciphertext, IC = 0.0433
 - Indicates a key of length 5 or 6
 - A statistical measure, so it can be in error, but it agrees with the previous estimate (which was 6)
Splitting Into Alphabets

alphabet 1: AIKHOIATTOBEGEEERNEOSAI
alphabet 2: DUKKEFUAWEMGKWDSUFWJU
alphabet 3: QSTIQBMAMQBWQVLKVTMTMI
alphabet 4: YBMZOAFCOOPHEAXPQEPOX
alphabet 5: SOIOOGVICOVCVASHOGCC
alphabet 6: MXBOGKVDIGZINNVVCIJHH

- ICs (#1, 0.0692; #2, 0.0779; #3, 0.0779; #4, 0.0562; #5, 0.1238; #6, 0.0429) indicate all alphabets have period 1, except #4 (between 1 and 2) and #6 (between 5 and 6); assume statistical variance
Frequency Examination

#	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	
1	3	1	0	0	4	0	1	1	3	0	1	0	0	1	3	0	1	1	2	0	0	0	0	0	0	0	
2	1	0	0	2	2	2	1	0	0	1	3	0	1	0	0	0	0	1	0	4	0	0	4	0	0	0	
3	1	2	0	0	0	0	0	0	2	0	1	1	4	0	0	0	4	0	1	3	0	2	1	0	0	0	
4	2	1	1	0	2	2	0	1	0	0	0	1	0	4	3	1	0	0	0	0	0	0	0	2	1	1	
5	1	0	5	0	0	0	2	1	2	0	0	0	0	0	5	0	0	0	3	0	0	2	0	0	0	0	
6	0	1	1	1	0	0	2	2	3	1	1	0	1	2	1	0	0	0	0	0	0	0	3	0	1	0	1

The last row has general letter frequencies (H high, M medium, L low)
Begin Decryption

• First matches characteristics of unshifted alphabet
• Third matches if I shifted to A
• Sixth matches if V shifted to A
• Substitute into ciphertext (bold are substitutions)

ADIYS RIUKB OCKKL MIGHK AZOTO EIOOL IFTAG
PAUEF VATAS CIITW EOCNO EIOOL BMTFV EGGOP
CNEKI HSSEW NECSE DDAAA RWCXS ANSNP HHEUL
QONOFEEGOSWLPCM AJEOC MIUAX
Look For Clues

- **AJE** in last line suggests “are”, meaning second alphabet maps A into S:

 ALIYS RICKB OCKSL MIGHS AZOTO MIOOL INTAG
 PACEF VATIS CIITE EOCNO MIOOL BUTFV EGOOP
 CNESI HSSEE NECSE LDAAA RECXS ANANP HHECL
 QONON EEGOS ELPCM AREOC MICAX
Next Alphabet

- **MICAX** in last line suggests “mical” (a common ending for an adjective), meaning fourth alphabet maps O into A:

 ALIMSRICKPOCKSLAIGHSANOTOMICOLINTOG
 PACETVATISQITEECCNONOMICOLBUTTVEGOOD
 CNESIVSSEENSCSELDOAARECLSANANDHHECL
 EONONESGOSELDCMARECCOMICAL
Got It!

• QI means that U maps into I, as Q is always followed by U:

 ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS
 PACET HATIS QUITE ECONO MICAL BUTTH EGOOD
 ONESI VESEE NSOSE LDOMA RECLE ANAND THECL
 EANON ESSOS ELDOM ARECO MICAL
One-Time Pad

- A Vigenère cipher with a random key at least as long as the message
 - Provably unbreakable
 - Why? Look at ciphertext DXQR. Equally likely to correspond to plaintext DOIT (key AJIY) and to plaintext DONT (key AJDY) and any other 4 letters
 - Warning: keys must be random, or you can attack the cipher by trying to regenerate the key
 - Approximations, such as using pseudorandom number generators to generate keys, are not random