Lecture 12
October 17, 2022
Naming and Certificates

• Certificates issued to a principal
 • Principal uniquely identified to avoid confusion

• Problem: names may be ambiguous
 • Does the name “Matt Bishop” refer to:
 • The author of this book?
 • A programmer in Australia?
 • A stock car driver in Muncie, Indiana?
 • Someone else who was named “Matt Bishop”
Disambiguating Identity

• Include ancillary information in names
 • Enough to identify principal uniquely
 • X.509v4 Distinguished Names do this

• Example: X.509v4 Distinguished Names
 • /O=University of California/OU=Davis campus/OU=Department of Computer Science/CN=Matt Bishop/
 refers to the Matt Bishop (CN is common name) in the Department of Computer Science (OU is organizational unit) on the Davis Campus of the University of California (O is organization)
X.509v3 Certificates

- Version
- Unique serial number
- Signature algorithm identifier
- Issuer’s Distinguished Name
- Validity interval
- Subject’s Distinguished Name
- Subject’s public key information
- Issuer’s unique identifier
- Subject’s unique identifier
- Extensions
- Signature
CAs and Policies

• Matt Bishop wants a certificate from Certs-from-Us
 • How does Certs-from-Us know this is “Matt Bishop”?
 • CA’s authentication policy says what type and strength of authentication is needed to identify Matt Bishop to satisfy the CA that this is, in fact, Matt Bishop
 • Will Certs-from-Us issue this “Matt Bishop” a certificate once he is suitably authenticated?
 • CA’s issuance policy says to which principals the CA will issue certificates
Example: Verisign CAs

• Class 1 CA issued certificates to individuals
 • Authenticated principal by email address
 • Idea: certificate used for sending, receiving email with various security services at that address

• Class 2 CA issued certificates to individuals
 • Authenticated by verifying user-supplied real name and address through an online database
 • Idea: certificate used for online purchasing
Example: Verisign CAs

• Class 3 CA issued certificates to individuals
 • Authenticated by background check from investigative service
 • Idea: higher level of assurance of identity than Class 1 and Class 2 CAs

• Fourth CA issued certificates to web servers
 • Same authentication policy as Class 3 CA
 • Idea: consumers using these sites had high degree of assurance the web site was not spoofed
Registration Authority

• Third party delegated by CA the authority to check data to be put into certificate
 • This includes identity
• RA determines whether CA’s requirements are met
• If so, then it informs CA to issue certificates
Internet Certification Hierarchy

• Tree structured arrangement of CAs
 • Root is *Internet Policy Registration Authority*, or IPRA
 • Sets policies all subordinate CAs must follow
 • Certifies subordinate CAs (called *policy certification authorities*, or PCAs), each of which has own authentication, issuance policies
 • Does not issue certificates to individuals or organizations other than subordinate CAs
 • PCAs issue certificates to ordinary CAs
 • Does not issue certificates to individuals or organizations other than subordinate CAs
 • CAs issue certificates to organizations or individuals
Example

• University of Valmont issues certificates to students, staff
 • Students must present valid reg cards (considered low assurance)
 • Staff must present proof of employment and fingerprints, which are compared to those taken when staff member hired (considered high assurance)
UValmont and PCAs

• First PCA: requires subordinate CAs to make good-faith effort to verify identities of principals to whom it issues certificates
 • Student authentication requirements meet this
• Second PCA: requires use of biometrics to verify identity
 • Student authentication requirements do not meet this
 • Staff authentication requirements do meet this
• UValmont establishes to CAs, one under each PCA above
UValmont and Certification Hierarchy

- **IPRA**
 - **PCA-1**
 - **UValmont Student CA**
 - **student**
 - **student**
 - **PCA-2**
 - **UValmont Staff CA**
 - **staff**
 - **staff**

 - Low assurance PCA
 - High assurance PCA
Certificate Differences

• Student, staff certificates signed using different private keys (for different CAs)
 • Student’s signed by key corresponding to low assurance certificate signed by first PCA
 • Staff’s signed by key corresponding to high assurance certificate signed by second PCA

• To see what policy used to authenticate:
 • Determine CA signing certificate, check its policy
 • Also go to PCA that signed CA’s certificate
 • CAs are restricted by PCA’s policy, but CA can restrict itself further
Types of Certificates

• Organizational certificate
 • Issued based on principal’s affiliation with organization
 • Example Distinguished Name
 /O=University of Valmont/OU=Computer Science Department/CN=Marsha Merteuille/

• Residential certificate
 • Issued based on where principal lives
 • No affiliation with organization implied
 • Example Distinguished Name
 /C=US/SP=Louisiana/L=Valmont/PA=1 Express Way/CN=Marsha Merteuille/
Certificates for Roles

• Certificate tied to a role

• Example
 • UVAlmont wants comptroller to have a certificate
 • This way, she can sign contracts and documents digitally
 • Distinguished Name
 /O=University of Valmont/OU=Office of the Big Bucks/RN=Comptroller/
 where “RN” is role name; note the individual using the certificate is not
 named, so no CN
Certificate Principal Identifiers

• Need not be Distinguished Names
 • Example: PGP certificates usually have email addresses, not Distinguished Names

• Permits ambiguity, so the user of the certificate may not be sure to whom it refers
 • Email addresses change often, particularly if work email addresses used

• Problem: how do you prevent naming conflicts?
Naming Conflicts

• X.509, PGP silent
 • Assume CAs will prevent name conflicts as follows
 • No two distinct CAs have the same Distinguished Name
 • No two principals have certificates issued containing the same Distinguished Name by a single CA
Internet Certification Hierarchy

• In theory, no naming collisions
 • IPRA requires each PCA to have a unique Distinguished Name
 • No PCA may certify two distinct CAs with same Distinguished Name

• In practice, considerable confusion possible!
Example Collision

John Smith, John Smith Jr. live at same address

• John Smith Jr. applies for residential certificate from Certs-from-Us, getting the DN of:
 /C=US/SP=Maine/L=Portland/PA=1 First Ave./CN=John Smith/

• Now his father applies for residential certificate from Quick-Certs, getting DN of:
 /C=US/SP=Maine/L=Portland/PA=1 First Ave./CN=John Smith/
 because Quick-Certs has no way of knowing that DN is taken
Solutions

• Organizational certificates
 • All CA DNs must be superior to that of the principal
 • Example: for Marsha Merteuille’s DN:
 /O=University of Valmont/OU=Computer Science Department/CN=Marsha Merteuille/
 DN of the CA must be either:
 /O=University of Valmont/
 (the issuer being the University) or
 /O=University of Valmont/OU=Computer Science Department/
 (the issuer being the Department)
Solutions

• Residential certificates
 • DN collisions explicitly allowed (in above example, no way to force disambiguation)
 /C=US/SP=Maine/L=Portland/PA=1 First Ave./CN=John Smith/
 Unless names of individuals are different, how can you force different names in the certificates?
Related Problem

• Single CA issues two types of certificates under two different PCAs

• Example
 • UValmont issues both low assurance, high assurance certificates under two different PCAs
 • How does validator know under which PCA the certificate was issued?
 • Reflects on assurance of the identity of the principal to whom certificate was issued
Solution

• CA Distinguished Names need *not* be unique
• CA (Distinguished Name, public key) pair *must* be unique
• Example
 • In earlier UValmont example, student validation required using first PCA’s public key; validation using second PCA’s public key would fail
 • Keys used to sign certificate indicate the PCA, and the policy, under which certificate is issued
Meaning of Identity

• Authentication validates identity
 • CA specifies type of authentication
 • If incorrect, CA may misidentify entity unintentionally

• Certificate binds \textit{external} identity to crypto key and Distinguished Name
 • Need confidentiality, integrity, anonymity
 • Recipient knows same entity sent all messages, but \textit{not} who that entity is
Persona Certificate

• Certificate with meaningless Distinguished Name
 • If DN is
 /C=US/O=Microsoft Corp./CN=Bill Gates/
 the real subject may not (or may) be Mr. Gates
 • Issued by CAs with persona policies under a PCA with policy that supports this
• PGP certificates can use any name, so provide this implicitly
Example

• Government requires all citizens with gene X to register
 • Anecdotal evidence people with this gene become criminals with probability 0.5.
 • Law to be made quietly, as no scientific evidence supports this, and government wants no civil rights fuss

• Government employee wants to alert media
 • Government will deny plan, change approach
 • Government employee will be fired, prosecuted

• Must notify media anonymously
Example

- Employee gets persona certificate, sends copy of plan to media
 - Media knows message unchanged during transit, but not who sent it
 - Government denies plan, changes it

- Employee sends copy of new plan signed using same certificate
 - Media can tell it’s from original whistleblower
 - Media cannot track back whom that whistleblower is
Trust

• Goal of certificate: bind correct identity to DN
• Question: what is degree of assurance?
• X.509v4, certificate hierarchy
 • Depends on policy of CA issuing certificate
 • Depends on how well CA follows that policy
 • Depends on how easy the required authentication can be spoofed
• Really, estimate based on the above factors
Example: Passport Required

• DN has name on passport, number and issuer of passport

• What are points of trust?
 • Passport not forged and name on it not altered
 • Passport issued to person named in passport
 • Person presenting passport is person to whom it was issued
 • CA has checked passport and individual using passport
PGP Certificates

- Public key packet
 - Version
 - Time of creation
 - Validity period
 - Public key algorithm and parameters
 - Public key
- Followed by 0 or more signature packets

- Signature packet (OpenPGP v3)
 - Version
 - Signature type (trust level)
 - Creation time
 - Key identifier of the signer
 - Public key algorithm
 - Hash algorithm
 - Part of signed hash value
 - Signature
PGP Certificates

• Level of trust in signature field signature type

• Four levels
 • Generic (no trust assertions made)
 • Persona (no verification)
 • Casual (some verification)
 • Positive (substantial verification)

• What do these mean?
 • Meaning not given by OpenPGP standard
 • Signer determines what level to use
 • Casual to one signer may be positive to another
Alice needs Frank’s certificate
• She doesn’t have it so she asks Bob and Cathy if they do
• Neither do, so Cathy asks Daniel and Eliza
• Daniel knows Frank and gets his public key
• Daniel decides how much he trusts Frank and that the certificate is Frank’s, and forwards both to Cathy
• Daniel decides how much he trusts Frank and that the certificate is Frank’s, and forwards both to Cathy
• Cathy decides how much she trusts Daniel, and forwards that and the certificate to Alice
• Alice decides whether to accept the certificate as legitimate or reject it.
Note: no certification or registration authorities needed