Outline for October 21, 2022

Reading: text, §16.3, 16.4, 18.1–18.2.1, 20.1.2.2

Assignments: Homework 2, due October 21; Progress report, due Nov 11 (Note change in due date!)

1. MULTICS ring mechanism
 (a) Rings, gates, ring-crossing faults
 (b) Used for both data and procedures; rights are REWA
 \((b_1, b_2)\) access bracket—can access freely; \((b_1, b_4)\) call bracket—can call segment through gate; so if \(a\)’s access bracket is \((32, 35)\) and its call bracket is \((36, 39)\), then assuming permission mode (REWA) allows access, a procedure in:
 - rings 0–31: can access \(a\), but ring-crossing fault occurs
 - rings 32–35: can access \(a\), no ring-crossing fault
 - rings 36–39: can access \(a\), provided a valid gate is used as an entry point
 - rings 40–63: cannot access \(a\)
 (c) If the procedure is accessing a data segment \(d\), no call bracket allowed; given the above, assuming permission mode (REWA) allows access, a procedure in:
 - rings 0–32: can access \(d\)
 - rings 33–35: can access \(d\), but cannot write to it (W or A)
 - rings 36–63: cannot access \(d\)

2. Lock and Key
 (a) Associate with each object a lock; associate with each process that has access to object a key (it’s a cross between ACLs and C-Lists)
 (b) Example: cryptographic (Gifford). \(X\) object enciphered with key \(K\). Associate an opener \(R\) with \(X\). Then:
 OR-Access: \(K\) can be recovered with any \(D_i\) in a list of \(n\) deciphering transformations, so
 \[R = (E_1(K), E_2(K), \ldots, E_n(K)) \]
 and any process with access to any of the \(D_i\)’s can access the file
 AND-Access: need all \(n\) deciphering functions to get \(K\): \(R = E_1(E_2(\ldots E_n(K)\ldots))\)
 (c) Types and locks

3. Secret sharing

4. Reference monitor

5. Confinement problem
 (a) Total isolation
 (b) Isolation

6. Virtual machines
 (a) Type 1 and type 2 hypervisors

7. Sandboxes