## Lecture 4 October 4, 2023

## Types of Access Control

- Discretionary Access Control (DAC, IBAC)
- individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
- system mechanism controls access to object, and individual cannot alter that access
- Originator Controlled Access Control (ORCON)
- originator (creator) of information controls who can access information


## Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
- Top Secret: highest
- Secret
- Confidential
- Unclassified: lowest
- Levels consist are called security clearance $L(s)$ for subjects and security classification $L(o)$ for objects


## Example

| security level | subject | object |
| :--- | :--- | :--- |
| Top Secret | Tamara | Personnel Files |
| Secret | Samuel | E-Mail Files |
| Confidential | Claire | Activity Logs |
| Unclassified | Ulaley | Telephone Lists |

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists


## Reading Information

- Information flows up, not down
- "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
- Subject $s$ can read object $o$ iff, $L(o) \leq L(s)$ and $s$ has permission to read $o$
- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
- Sometimes called "no reads up" rule


## Writing Information

- Information flows up, not down
- "Writes up" allowed, "writes down" disallowed
- *-Property (Step 1)
- Subject $s$ can write object $o$ iff $L(s) \leq L(o)$ and $s$ has permission to write $o$
- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
- Sometimes called "no writes down" rule


## Basic Security Theorem, Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1 , and the *property, step 1 , then every state of the system is secure
- Proof: induct on the number of transitions


## Lattices

- Lattices used to analyze several models
- Bell-LaPadula confidentiality model
- Biba integrity model
- A lattice consists of a set and a relation
- Relation must partially order set
- Relation orders some, but not all, elements of set


## Sets and Relations

- $S$ set, $R: S \times S$ relation
- If $a, b \in S$, and $(a, b) \in R$, write $a R b$
- Example
- $I=\{1,2,3\} ; R$ is $\leq$
- $R=\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
- So we write $1 \leq 2$ and $3 \leq 3$ but not $3 \leq 2$


## Relation Properties

- Reflexive
- For all $a \in S, a R a$
- On $I$, $\leq$ is reflexive as $1 \leq 1,2 \leq 2,3 \leq 3$
- Antisymmetric
- For all $a, b \in S, a R b \wedge b R a \Rightarrow a=b$
- On $I, \leq$ is antisymmetric as $1 \leq x$ and $x \leq 1$ means $x=1$
- Transitive
- For all $a, b, c \in S, a R b \wedge b R c \Rightarrow a R c$
- On $I, \leq$ is transitive as $1 \leq 2$ and $2 \leq 3$ means $1 \leq 3$


## Example

- $\mathbb{C}$ set of complex numbers
- $a \in \mathbb{C} \Rightarrow a=a_{\mathrm{R}}+a_{1}$, where $a_{\mathrm{R}}, a_{1}$ integers
- $a \leq_{\mathrm{C}} b$ if, and only if, $a_{\mathrm{R}} \leq b_{\mathrm{R}}$ and $a_{1} \leq b_{1}$
- $a \leq_{c} b$ is reflexive, antisymmetric, transitive
- As $\leq$ is over integers, and $a_{R}, a_{1}$ are integers


## Partial Ordering

- Relation $R$ orders some members of set $S$
- If all ordered, it's a total ordering
- Example
- $\leq$ on integers is total ordering
- $\leq_{\mathbb{C}}$ is partial ordering on $\mathbb{C}$
- Neither $3+5 i \leq_{\mathbb{C}} 4+2 i$ nor $4+2 i \leq_{\mathbb{C}} 3+5 i$ holds


## Upper Bounds

- For $a, b \in S$, if $u$ in $S$ with $a R u$, bRu exists, then $u$ is an upper bound
- A least upper bound if there is no $t \in S$ such that $a R t, b R t$, and $t R u$
- Example
- For $1+5 i, 2+4 i \in \mathbb{C}$
- Some upper bounds are $2+5 i, 3+8 i$, and $9+100 i$
- Least upper bound is $2+5 i$


## Lower Bounds

- For $a, b \in S$, if / in $S$ with IRa, IRb exists, then I is a lower bound
- A greatest lower bound if there is no $t \in S$ such that $t R a, t R b$, and $/ R t$
- Example
- For $1+5 i, 2+4 i \in \mathbb{C}$
- Some lower bounds are $0,-1+2 i, 1+1 i$, and $1+4 i$
- Greatest lower bound is $1+4 i$


## Lattices

- Set $S$, relation $R$
- $R$ is reflexive, antisymmetric, transitive on elements of $S$
- For every $s, t \in S$, there exists a greatest lower bound under $R$
- For every $s, t \in S$, there exists a least upper bound under $R$


## Example

- $S=\{0,1,2\} ; R=\leq$ is a lattice
- $R$ is clearly reflexive, antisymmetric, transitive on elements of $S$
- Least upper bound of any two elements of $S$ is the greater of the elements
- Greatest lower bound of any two elements of $S$ is the lesser of the elements


## Picture



Arrows represent $\leq$; this forms a total ordering

## Example

- $\mathbb{C}, \leq_{\mathbb{C}}$ form a lattice
- $\leq_{\mathbb{C}}$ is reflexive, antisymmetric, and transitive
- Shown earlier
- Least upper bound for $a$ and $b$ :
- $c_{\mathrm{R}}=\max \left(a_{\mathrm{R}}, b_{\mathrm{R}}\right), c_{\mathrm{I}}=\max \left(a_{1}, b_{1}\right)$; then $c=c_{\mathrm{R}}+c_{1} i$
- Greatest lower bound for $a$ and $b$ :
- $c_{\mathrm{R}}=\min \left(a_{\mathrm{R}}, b_{\mathrm{R}}\right), c_{\mathrm{I}}=\min \left(a_{1}, b_{1}\right)$; then $c=c_{\mathrm{R}}+c_{\mathrm{I}} i$


## Picture



## Arrows represent $\leq_{\mathbb{C}}$

## Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (clearance, category set)
- Examples
- ( Top Secret, \{ NUC, EUR, ASI \})
- ( Confidential, \{ EUR, ASI \})
- ( Secret, \{ NUC, ASI \} )


## Levels and Lattices

- $(A, C)$ dom $\left(A^{\prime}, C\right)$ iff $A^{\prime} \leq A$ and $C^{\prime} \subseteq C$
- Examples
- (Top Secret, \{NUC, ASI\}) dom (Secret, \{NUC\})
- (Secret, \{NUC, EUR\}) dom (Confidential,\{NUC, EUR\})
- (Top Secret, \{NUC\}) $\neg$ dom (Confidential, \{EUR\})
- Let $C$ be set of classifications, $K$ set of categories. Set of security levels $L=C \times K$, dom form lattice
- $\operatorname{lub}(L)=(\max (A), C)$
- $g l b(L)=(\min (A), \varnothing)$


## Levels and Ordering

- Security levels partially ordered
- Any pair of security levels may (or may not) be related by dom
- "dominates" serves the role of "greater than" in step 1
- "greater than" is a total ordering, though


## Reading Information

- Information flows up, not down
- "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
- Subject $s$ can read object oiff $L(s)$ dom $L(o)$ and $s$ has permission to read $o$
- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
- Sometimes called "no reads up" rule


## Writing Information

- Information flows up, not down
- "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
- Subject $s$ can write object $o$ iff $L(o)$ dom $L(s)$ and $s$ has permission to write $o$
- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
- Sometimes called "no writes down" rule


## Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2 , and the *property, step 2, then every state of the system is secure
- Proof: induct on the number of transitions
- In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions - but simpler to express the way done here.


## Problem

- Colonel has (Secret, \{NUC, EUR\}) clearance
- Major has (Secret, \{EUR\}) clearance
- Major can talk to colonel ("write up" or "read down")
- Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!


## Solution

- Define maximum, current levels for subjects
- maxlevel(s) dom curlevel(s)
- Example
- Treat Major as an object (Colonel is writing to him/her)
- Colonel has maxlevel (Secret, \{ NUC, EUR \})
- Colonel sets curlevel to (Secret, \{ EUR \})
- Now L(Major) dom curlevel(Colonel)
- Colonel can write to Major without violating "no writes down"
- Does $L(s)$ mean curlevel(s) or maxlevel(s)?
- Formally, we need a more precise notation


## Example: Trusted Solaris

- Provides mandatory access controls
- Security level represented by sensitivity label
- Least upper bound of all sensitivity labels of a subject called clearance
- Default labels ADMIN_HIGH (dominates any other label) and ADMIN_LOW (dominated by any other label)
- $S$ has controlling user $U_{S}$
- $S_{L}$ sensitivity label of subject
- privileged $(S, P)$ true if $S$ can override or bypass part of security policy $P$
- asserted $(S, P)$ true if $S$ is doing so


## Rules

$C_{L}$ clearance of $S, S_{L}$ sensitivity label of $S, U_{S}$ controlling user of $S$, and $O_{L}$ sensitivity label of $O$

1. If $\neg$ privileged $\left(S\right.$, "change $S_{L}$ "), then no sequence of operations can change $S_{L}$ to a value that it has not previously assumed
2. If $\neg \operatorname{privileged}\left(S\right.$, "change $S_{L}$ "), then $\neg \operatorname{asserted}\left(S\right.$, "change $S_{L}$ ")
3. If $\neg \operatorname{privileged}\left(S\right.$, "change $S_{L}$ "), then no value of $S_{L}$ can be outside the clearance of $U_{S}$
4. For all subjects $S$, named objects $O$, if $\neg$ privileged $\left(S\right.$, "change $O_{L}$ "), then no sequence of operations can change $O_{L}$ to a value that it has not previously assumed

## Rules (con't)

$C_{L}$ clearance of $S, S_{L}$ sensitivity label of $S, U_{S}$ controlling user of $S$, and $O_{L}$ sensitivity label of $O$
5. For all subjects $S$, named objects $O$, if $-\operatorname{privileged}(S$, "override $O$ 's mandatory read access control"), then read access to $O$ is granted only if $S_{L}$ dom $O_{L}$

- Instantiation of simple security condition

6. For all subjects $S$, named objects $O$, if $-\operatorname{privileged}(S$, "override $O$ 's mandatory write access control"), then write access to $O$ is granted only if $O_{L}$ dom $S_{L}$ and $C_{L}$ dom $O_{L}$

- Instantiation of *-property

