Lecture 4 October 4, 2023

Types of Access Control

- Discretionary Access Control (DAC, IBAC)
 - individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
 - system mechanism controls access to object, and individual cannot alter that access
- Originator Controlled Access Control (ORCON)
 - originator (creator) of information controls who can access information

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Levels consist are called *security clearance L(s)* for subjects and *security classification L(o)* for objects

Example

security level	subject	object
Top Secret	Tamara	Personnel Files
Secret	Samuel	E-Mail Files
Confidential	Claire	Activity Logs
Unclassified	Ulaley	Telephone Lists

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists

Reading Information

- Information flows *up*, not *down*
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
 - Subject s can read object o iff, $L(o) \le L(s)$ and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 1)
 - Subject s can write object o iff $L(s) \leq L(o)$ and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem, Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *- property, step 1, then every state of the system is secure
 - Proof: induct on the number of transitions

Lattices

- Lattices used to analyze several models
 - Bell-LaPadula confidentiality model
 - Biba integrity model
- A lattice consists of a set and a relation
- Relation must partially order set
 - Relation orders some, but not all, elements of set

Sets and Relations

- S set, R: S × S relation
 - If $a, b \in S$, and $(a, b) \in R$, write aRb
- Example
 - *I* = { 1, 2, 3 }; *R* is ≤
 - $R = \{ (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3) \}$
 - So we write $1 \le 2$ and $3 \le 3$ but not $3 \le 2$

Relation Properties

- Reflexive
 - For all $a \in S$, aRa
 - On I, \leq is reflexive as $1 \leq 1$, $2 \leq 2$, $3 \leq 3$
- Antisymmetric
 - For all $a, b \in S$, $aRb \land bRa \Rightarrow a = b$
 - On *I*, \leq is antisymmetric as $1 \leq x$ and $x \leq 1$ means x = 1
- Transitive
 - For all $a, b, c \in S$, $aRb \land bRc \Rightarrow aRc$
 - On *I*, \leq is transitive as $1 \leq 2$ and $2 \leq 3$ means $1 \leq 3$

Example

- $\mathbb C$ set of complex numbers
- $a \in \mathbb{C} \Rightarrow a = a_{R} + a_{I}i$, where a_{R} , a_{I} integers
- $a \leq_{\mathbf{C}} b$ if, and only if, $a_{\mathbf{R}} \leq b_{\mathbf{R}}$ and $a_{\mathbf{I}} \leq b_{\mathbf{I}}$
- $a \leq_{\mathbf{C}} b$ is reflexive, antisymmetric, transitive
 - As \leq is over integers, and $a_{\rm R}$, $a_{\rm I}$ are integers

Partial Ordering

- Relation R orders some members of set S
 - If all ordered, it's a total ordering
- Example
 - ≤ on integers is total ordering
 - $\leq_{\mathbb{C}}$ is partial ordering on \mathbb{C}
 - Neither $3+5i \leq_{\mathbb{C}} 4+2i$ nor $4+2i \leq_{\mathbb{C}} 3+5i$ holds

Upper Bounds

- For $a, b \in S$, if u in S with aRu, bRu exists, then u is an upper bound
 - A *least upper bound* if there is no *t* ∈ *S* such that *aRt*, *bRt*, and *tRu*
- Example
 - For 1 + 5i, $2 + 4i \in \mathbb{C}$
 - Some upper bounds are 2 + 5*i*, 3 + 8*i*, and 9 + 100*i*
 - Least upper bound is 2 + 5*i*

Lower Bounds

- For *a*, *b* ∈ *S*, if *I* in *S* with *IRa*, *IRb* exists, then *I* is a *lower bound*
 - A greatest lower bound if there is no *t* ∈ *S* such that *tRa*, *tRb*, and *lRt*
- Example
 - For 1 + 5i, $2 + 4i \in \mathbb{C}$
 - Some lower bounds are 0, -1 + 2i, 1 + 1i, and 1+4i
 - Greatest lower bound is 1 + 4*i*

Lattices

- Set *S*, relation *R*
 - *R* is reflexive, antisymmetric, transitive on elements of *S*
 - For every *s*, *t* ∈ *S*, there exists a greatest lower bound under *R*
 - For every *s*, *t* ∈ *S*, there exists a least upper bound under *R*

Example

- $S = \{0, 1, 2\}; R = \le$ is a lattice
 - *R* is clearly reflexive, antisymmetric, transitive on elements of *S*
 - Least upper bound of any two elements of *S* is the greater of the elements
 - Greatest lower bound of any two elements of *S* is the lesser of the elements

Picture

Arrows represent ≤; this forms a total ordering

Example

- \mathbb{C} , $\leq_{\mathbb{C}}$ form a lattice
 - $\leq_{\mathbb{C}}$ is reflexive, antisymmetric, and transitive
 - Shown earlier
 - Least upper bound for *a* and *b*:
 - $c_{R} = \max(a_{R}, b_{R}), c_{I} = \max(a_{I}, b_{I});$ then $c = c_{R} + c_{I}i$
 - Greatest lower bound for *a* and *b*:
 - $c_{\rm R} = \min(a_{\rm R}, b_{\rm R}), c_{\rm I} = \min(a_{\rm I}, b_{\rm I})$; then $c = c_{\rm R} + c_{\rm I}i$

Picture

Arrows represent $\leq_{\mathbb{C}}$

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (*clearance, category set*)
- Examples
 - (Top Secret, { NUC, EUR, ASI })
 - (Confidential, { EUR, ASI })
 - (Secret, {NUC, ASI })

Levels and Lattices

- (A, C) dom (A', C') iff $A' \leq A$ and $C' \subseteq C$
- Examples
 - (Top Secret, {NUC, ASI}) *dom* (Secret, {NUC})
 - (Secret, {NUC, EUR}) *dom* (Confidential,{NUC, EUR})
 - (Top Secret, {NUC}) ¬dom (Confidential, {EUR})
- Let C be set of classifications, K set of categories. Set of security levels
 - $L = C \times K$, dom form lattice
 - lub(L) = (max(A), C)
 - $glb(L) = (min(A), \emptyset)$

Levels and Ordering

- Security levels partially ordered
 - Any pair of security levels may (or may not) be related by *dom*
- "dominates" serves the role of "greater than" in step 1
 - "greater than" is a total ordering, though

Reading Information

- Information flows *up*, not *down*
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
 - Subject *s* can read object *o* iff *L*(*s*) *dom L*(*o*) and *s* has permission to read *o*
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
 - Subject *s* can write object *o* iff *L*(*o*) *dom L*(*s*) and *s* has permission to write *o*
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *property, step 2, then every state of the system is secure
 - Proof: induct on the number of transitions
 - In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.

Problem

- Colonel has (Secret, {NUC, EUR}) clearance
- Major has (Secret, {EUR}) clearance
 - Major can talk to colonel ("write up" or "read down")
 - Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

Solution

- Define maximum, current levels for subjects
 - maxlevel(s) dom curlevel(s)
- Example
 - Treat Major as an object (Colonel is writing to him/her)
 - Colonel has *maxlevel* (Secret, { NUC, EUR })
 - Colonel sets *curlevel* to (Secret, { EUR })
 - Now *L*(Major) *dom curlevel*(Colonel)
 - Colonel can write to Major without violating "no writes down"
 - Does *L*(*s*) mean *curlevel*(*s*) or *maxlevel*(*s*)?
 - Formally, we need a more precise notation

Example: Trusted Solaris

- Provides mandatory access controls
 - Security level represented by *sensitivity label*
 - Least upper bound of all sensitivity labels of a subject called *clearance*
 - Default labels ADMIN_HIGH (dominates any other label) and ADMIN_LOW (dominated by any other label)
- S has controlling user U_s
 - *S*_L sensitivity label of subject
 - *privileged*(*S*, *P*) true if *S* can override or bypass part of security policy *P*
 - asserted (S, P) true if S is doing so

Rules

- C_L clearance of S, S_L sensitivity label of S, U_S controlling user of S, and O_L sensitivity label of O
- 1. If $\neg privileged(S, "change S_L")$, then no sequence of operations can change S_L to a value that it has not previously assumed
- 2. If \neg *privileged*(*S*, "change S_L "), then \neg *asserted*(*S*, "change S_L ")
- 3. If $\neg privileged(S, "change S_L")$, then no value of S_L can be outside the clearance of U_S
- 4. For all subjects *S*, named objects *O*, if $\neg privileged(S, "change O_L")$, then no sequence of operations can change O_L to a value that it has not previously assumed

Rules (con't)

 C_L clearance of S, S_L sensitivity label of S, U_S controlling user of S, and O_L sensitivity label of O

- For all subjects S, named objects O, if ¬privileged(S, "override O's mandatory read access control"), then read access to O is granted only if S_L dom O_L
 - Instantiation of simple security condition
- For all subjects S, named objects O, if ¬privileged(S, "override O's mandatory write access control"), then write access to O is granted only if O_L dom S_L and C_L dom O_L
 - Instantiation of *-property