Lecture 4
October 4, 2023
Types of Access Control

• Discretionary Access Control (DAC, IBAC)
 • individual user sets access control mechanism to allow or deny access to an object

• Mandatory Access Control (MAC)
 • system mechanism controls access to object, and individual cannot alter that access

• Originator Controlled Access Control (ORCON)
 • originator (creator) of information controls who can access information
Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest

- Levels consist are called *security clearance* $L(s)$ for subjects and *security classification* $L(o)$ for objects
Example

<table>
<thead>
<tr>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Secret</td>
<td>Tamara</td>
<td>Personnel Files</td>
</tr>
<tr>
<td>Secret</td>
<td>Samuel</td>
<td>E-Mail Files</td>
</tr>
<tr>
<td>Confidential</td>
<td>Claire</td>
<td>Activity Logs</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Ulaley</td>
<td>Telephone Lists</td>
</tr>
</tbody>
</table>

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists
Reading Information

• Information flows *up*, not *down*
 • “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 1)
 • Subject s can read object o iff, $L(o) \leq L(s)$ and s has permission to read o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 • “Writes up” allowed, “writes down” disallowed

• *-Property (Step 1)
 • Subject s can write object o iff $L(s) \leq L(o)$ and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no writes down” rule
Basic Security Theorem, Step 1

• If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *-property, step 1, then every state of the system is secure
 • Proof: induct on the number of transitions
Lattices

- Lattices used to analyze several models
 - Bell-LaPadula confidentiality model
 - Biba integrity model
- A lattice consists of a set and a relation
- Relation must partially order set
 - Relation orders some, but not all, elements of set
Sets and Relations

• S set, R: $S \times S$ relation
 • If $a, b \in S$, and $(a, b) \in R$, write aRb

• Example
 • $I = \{1, 2, 3\}$; R is \leq
 • $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
 • So we write $1 \leq 2$ and $3 \leq 3$ but not $3 \leq 2$
Relation Properties

• Reflexive
 • For all \(a \in S \), \(aRa \)
 • On \(I \), \(\leq \) is reflexive as \(1 \leq 1 \), \(2 \leq 2 \), \(3 \leq 3 \)

• Antisymmetric
 • For all \(a, b \in S \), \(aRb \land bRa \Rightarrow a = b \)
 • On \(I \), \(\leq \) is antisymmetric as \(1 \leq x \) and \(x \leq 1 \) means \(x = 1 \)

• Transitive
 • For all \(a, b, c \in S \), \(aRb \land bRc \Rightarrow aRc \)
 • On \(I \), \(\leq \) is transitive as \(1 \leq 2 \) and \(2 \leq 3 \) means \(1 \leq 3 \)
Example

- \mathbb{C} set of complex numbers
- $a \in \mathbb{C} \Rightarrow a = a_R + a_Ii$, where a_R, a_I integers
- $a \leq_C b$ if, and only if, $a_R \leq b_R$ and $a_I \leq b_I$
- $a \leq_C b$ is reflexive, antisymmetric, transitive
 - As \leq is over integers, and a_R, a_I are integers
Partial Ordering

• Relation R orders some members of set S
 • If all ordered, it’s a total ordering

• Example
 • \leq on integers is total ordering
 • \leq_C is partial ordering on \mathbb{C}
 • Neither $3+5i \leq_C 4+2i$ nor $4+2i \leq_C 3+5i$ holds
Upper Bounds

• For \(a, b \in S \), if \(u \) in \(S \) with \(aRu, bRu \) exists, then \(u \) is an upper bound
 • A least upper bound if there is no \(t \in S \) such that \(aRt, bRt, \) and \(tRu \)
• Example
 • For \(1 + 5i, 2 + 4i \in \mathbb{C} \)
 • Some upper bounds are \(2 + 5i, 3 + 8i, \) and \(9 + 100i \)
 • Least upper bound is \(2 + 5i \)
Lower Bounds

• For $a, b \in S$, if l in S with lRa, lRb exists, then l is a lower bound
 • A greatest lower bound if there is no $t \in S$ such that tRa, tRb, and lRt
• Example
 • For $1 + 5i, 2 + 4i \in \mathbb{C}$
 • Some lower bounds are $0, -1 + 2i, 1 + 1i$, and $1 + 4i$
 • Greatest lower bound is $1 + 4i$
Lattices

• Set S, relation R
 • R is reflexive, antisymmetric, transitive on elements of S
 • For every $s, t \in S$, there exists a greatest lower bound under R
 • For every $s, t \in S$, there exists a least upper bound under R
Example

- $S = \{ 0, 1, 2 \}; \ R = \leq$ is a lattice
 - R is clearly reflexive, antisymmetric, transitive on elements of S
 - Least upper bound of any two elements of S is the greater of the elements
 - Greatest lower bound of any two elements of S is the lesser of the elements
Arrows represent ≤; this forms a total ordering
Example

• \(\mathbb{C}, \leq_\mathbb{C} \) form a lattice
 • \(\leq_\mathbb{C} \) is reflexive, antisymmetric, and transitive
 • Shown earlier
 • Least upper bound for \(a \) and \(b \):
 • \(c_R = \max(a_R, b_R), c_i = \max(a_I, b_I) \); then \(c = c_R + c_i i \)
 • Greatest lower bound for \(a \) and \(b \):
 • \(c_R = \min(a_R, b_R), c_i = \min(a_I, b_I) \); then \(c = c_R + c_i i \)
Picture

Arrows represent $\leq_{\mathbb{C}}$
Bell-LaPadula Model, Step 2

• Expand notion of security level to include categories
• Security level is (*clearance*, *category set*)
• Examples
 • (Top Secret, {NUC, EUR, ASI})
 • (Confidential, {EUR, ASI})
 • (Secret, {NUC, ASI})
Levels and Lattices

• \((A, C) \text{ dom } (A', C')\) iff \(A' \leq A\) and \(C' \subseteq C\)

• Examples
 • (Top Secret, \{NUC, ASI\}) \text{ dom } (Secret, \{NUC\})
 • (Secret, \{NUC, EUR\}) \text{ dom } (Confidential, \{NUC, EUR\})
 • (Top Secret, \{NUC\}) \not\text{ dom } (Confidential, \{EUR\})

• Let \(C\) be set of classifications, \(K\) set of categories. Set of security levels \(L = C \times K\), \text{ dom } form lattice
 • \(\text{lub}(L) = (\max(A), C)\)
 • \(\text{glb}(L) = (\min(A), \emptyset)\)
Levels and Ordering

• Security levels partially ordered
 • Any pair of security levels may (or may not) be related by *dom*

• “dominates” serves the role of “greater than” in step 1
 • “greater than” is a total ordering, though
Reading Information

• Information flows *up*, not *down*
 • “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 2)
 • Subject s can read object o iff $L(s) \textit{ dom } L(o)$ and s has permission to read o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no reads up” rule
Writing Information

• Information flows up, not down
 • “Writes up” allowed, “writes down” disallowed

• *-Property (Step 2)
 • Subject s can write object o iff $L(o) \text{ dom } L(s)$ and s has permission to write o
 • Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 • Sometimes called “no writes down” rule
Basic Security Theorem, Step 2

• If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
 • Proof: induct on the number of transitions
 • In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.
Problem

• Colonel has (Secret, \{NUC, EUR\}) clearance
• Major has (Secret, \{EUR\}) clearance
 • Major can talk to colonel ("write up" or "read down")
 • Colonel cannot talk to major ("read up" or "write down")
• Clearly absurd!
Solution

• Define maximum, current levels for subjects
 • $maxlevel(s) \ dom curlevel(s)$

• Example
 • Treat Major as an object (Colonel is writing to him/her)
 • Colonel has $maxlevel$ (Secret, { NUC, EUR })
 • Colonel sets $curlevel$ to (Secret, { EUR })
 • Now $L($Major$) \ dom curlevel($Colonel$)$
 • Colonel can write to Major without violating “no writes down”
 • Does $L(s)$ mean $curlevel(s)$ or $maxlevel(s)$?
 • Formally, we need a more precise notation
Example: Trusted Solaris

• Provides mandatory access controls
 • Security level represented by *sensitivity label*
 • Least upper bound of all sensitivity labels of a subject called *clearance*
 • Default labels ADMIN_HIGH (dominates any other label) and ADMIN_LOW (dominated by any other label)

• S has controlling user U_S
 • S_L sensitivity label of subject
 • $\text{privileged}(S, P)$ true if S can override or bypass part of security policy P
 • $\text{asserted } (S, P)$ true if S is doing so
Rules

C_L clearance of S, S_L sensitivity label of S, U_S controlling user of S, and O_L sensitivity label of O

1. If $\neg\text{privileged}(S, \text{“change } S_L\text{”})$, then no sequence of operations can change S_L to a value that it has not previously assumed

2. If $\neg\text{privileged}(S, \text{“change } S_L\text{”})$, then $\neg\text{asserted}(S, \text{“change } S_L\text{”})$

3. If $\neg\text{privileged}(S, \text{“change } S_L\text{”})$, then no value of S_L can be outside the clearance of U_S

4. For all subjects S, named objects O, if $\neg\text{privileged}(S, \text{“change } O_L\text{”})$, then no sequence of operations can change O_L to a value that it has not previously assumed
Rules (con’t)

C_L clearance of S, S_L sensitivity label of S, U_S controlling user of S, and O_L sensitivity label of O

5. For all subjects S, named objects O, if \negprivileged(S, “override O’s mandatory read access control”), then read access to O is granted only if $S_L \text{ dom } O_L$
 • Instantiation of simple security condition

6. For all subjects S, named objects O, if \negprivileged(S, “override O’s mandatory write access control”), then write access to O is granted only if $O_L \text{ dom } S_L$ and $C_L \text{ dom } O_L$
 • Instantiation of *-property