Lecture 5 October 6, 2023

Example: Trusted Solaris

- Provides mandatory access controls
 - Security level represented by *sensitivity label*
 - Least upper bound of all sensitivity labels of a subject called *clearance*
 - Default labels ADMIN_HIGH (dominates any other label) and ADMIN_LOW (dominated by any other label)
- S has controlling user U_s
 - *S*_L sensitivity label of subject
 - *privileged*(*S*, *P*) true if *S* can override or bypass part of security policy *P*
 - asserted (S, P) true if S is doing so

Rules

- C_L clearance of S, S_L sensitivity label of S, U_S controlling user of S, and O_L sensitivity label of O
- 1. If $\neg privileged(S, "change S_L")$, then no sequence of operations can change S_L to a value that it has not previously assumed
- 2. If \neg *privileged*(*S*, "change S_L "), then \neg *asserted*(*S*, "change S_L ")
- 3. If $\neg privileged(S, "change S_L")$, then no value of S_L can be outside the clearance of U_S
- For all subjects S, named objects O, if ¬privileged(S, "change O_L"), then no sequence of operations can change O_L to a value that it has not previously assumed

Rules (con't)

 C_L clearance of S, S_L sensitivity label of S, U_S controlling user of S, and O_L sensitivity label of O

- For all subjects S, named objects O, if ¬privileged(S, "override O's mandatory read access control"), then read access to O is granted only if S_L dom O_L
 - Instantiation of simple security condition
- For all subjects S, named objects O, if ¬privileged(S, "override O's mandatory write access control"), then write access to O is granted only if O_L dom S_L and C_L dom O_L
 - Instantiation of *-property

Initial Assignment of Labels

- Each account is assigned a label range [clearance, minimum]
- On login, Trusted Solaris determines if the session is single-level
 - If clearance = minimum, single level and session gets that label
 - If not, multi-level; user asked to specify clearance for session; must be in the label range
 - In multi-level session, can change to any label in the range of the session clearance to the minimum

Writing

- Allowed when subject, object labels are the same or file is in downgraded directory D with sensitivity label D_L and all the following hold:
 - $S_L dom D_L$
 - S has discretionary read, search access to D
 - $O_L dom S_L$ and $O_L \neq S_L$
 - S has discretionary write access to O
 - $C_L dom O_L$
- Note: subject cannot read object

Directory Problem

- Process *p* at MAC_A tries to create file */tmp/x*
- /tmp/x exists but has MAC label MAC_B
 - Assume MAC_B dom MAC_A
- Create fails
 - Now *p* knows a file named *x* with a higher label exists
- Fix: only programs with same MAC label as directory can create files in the directory
 - Now compilation won't work, mail can't be delivered

Multilevel Directory

- Directory with a set of subdirectories, one per label
 - Not normally visible to user
 - p creating /tmp/x actually creates /tmp/d/x where d is directory corresponding to MAC_A
 - All p's references to /tmp go to /tmp/d
- *p* cd's to /tmp
 - System call stat(".", &buf) returns information about /tmp/d
 - System call mldstat(".", &buf) returns information about/tmp

Labeled Zones

- Used in Trusted Solaris Extensions, various flavors of Linux
- Zone: virtual environment tied to a unique label
 - Each process can only access objects in its zone
- Global zone encompasses everything on system
 - Its label is ADMIN_HIGH
 - Only system administrators can access this zone
- Each zone has a unique root directory
 - All objects within the zone have that zone's label
 - Each zone has a unique label

More about Zones

- Can import (mount) file systems from other zones provided:
 - If importing *read-only*, importing zone's label must dominate imported zone's label
 - If importing *read-write*, importing zone's label must equal imported zone's label
 - So the zones are the same; import unnecessary
 - Labels checked at time of import
- Objects in imported file system retain their labels

- *L*₁ *dom L*₂
- *L*₃ *dom L*₂
- Process in L₁ can read any file in the export directory of L₂ (assuming discretionary permissions allow it)
- L_1, L_3 disjoint
 - Do not share any files
- System directories imported from global zone, at ADMIN_LOW
 - So can only be read

Slide 11

Principle of Tranquility

- Raising object's security level
 - Information once available to some subjects is no longer available
 - Usually assume information has already been accessed, so this does nothing
- Lowering object's security level
 - The *declassification problem*
 - Essentially, a "write down" violating *-property
 - Solution: define set of trusted subjects that *sanitize* or remove sensitive information before security level lowered

Types of Tranquility

- Strong Tranquility
 - The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system
- Weak Tranquility
 - The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system

Example: Trusted Solaris

- Security administrator can provide specific authorization for a user to change the MAC label of a file
 - "downgrade file label" authorization
 - "upgrade file label" authorization
- User requires additional authorization if not the owner of the file
 - "act as file owner" authorization

Requirements of Integrity Policies

- 1. Users will not write their own programs, but will use existing production programs and databases.
- 2. Programmers will develop and test programs on a non-production system; if they need access to actual data, they will be given production data via a special process, but will use it on their development system.
- 3. A special process must be followed to install a program from the development system onto the production system.
- 4. The special process in requirement 3 must be controlled and audited.
- 5. The managers and auditors must have access to both the system state and the system logs that are generated.

Principles of Operation

- Separation of duty: if two or more steps are required to perform a critical function, at least two different people should perform the steps
- Separation of function: different entities should perform different functions
- *Auditing*: recording enough information to ensure the abilities to both recover and determine accountability

Biba Integrity Model

Basis for all 3 models:

- Set of subjects S, objects O, integrity levels I, relation ≤ ⊆ I × I holding when second dominates first
- min: $I \times I \rightarrow I$ returns lesser of integrity levels
- *i*: $S \cup O \rightarrow I$ gives integrity level of entity
- \underline{r} : $S \times O$ means $s \in S$ can read $o \in O$
- <u>w</u>, <u>x</u> defined similarly

Intuition for Integrity Levels

- The higher the level, the more confidence
 - That a program will execute correctly
 - That data is accurate and/or reliable
- Note relationship between integrity and trustworthiness
- Important point: *integrity levels are not security levels*

Information Transfer Path

- An *information transfer path* is a sequence of objects $o_1, ..., o_{n+1}$ and corresponding sequence of subjects $s_1, ..., s_n$ such that $s_i \underline{r} o_i$ and $s_i \underline{w} o_{i+1}$ for all $i, 1 \le i \le n$.
- Idea: information can flow from o_1 to o_{n+1} along this path by successive reads and writes

Strict Integrity Policy

- Dual of Bell-LaPadula model
 - 1. $s \in S$ can read $o \in O$ iff $i(s) \leq i(o)$
 - 2. $s \in S$ can write to $o \in O$ iff $i(o) \leq i(s)$
 - 3. $s_1 \in S$ can execute $s_2 \in S$ iff $i(s_2) \leq i(s_1)$
- Add compartments and discretionary controls to get full dual of Bell-LaPadula model
- If there is an information transfer path from o₁ ∈ O to o_{n+1} ∈ O, the low-water-mark policy requires i(o_{n+1}) ≤ i(o₁) for all n > 1.
- Term "Biba Model" refers to this

LOCUS and Biba

- Goal: prevent untrusted software from altering data or other software
- Approach: make levels of trust explicit
 - credibility rating based on estimate of software's trustworthiness (0 untrusted, n highly trusted)
 - trusted file systems contain software with a single credibility level
 - Process has *risk level* or highest credibility level at which process can execute
 - Must use *run-untrusted* command to run software at lower credibility level

Clark-Wilson Integrity Model

- Integrity defined by a set of constraints
 - Data in a *consistent* or valid state when it satisfies these
- Example: Bank
 - D today's deposits, W withdrawals, YB yesterday's balance, TB today's balance
 - Integrity constraint: D + YB W
- *Well-formed transaction* move system from one consistent state to another
- Issue: who examines, certifies transactions done correctly?

Entities

- CDIs: constrained data items
 - Data subject to integrity controls
- UDIs: unconstrained data items
 - Data not subject to integrity controls
- IVPs: integrity verification procedures
 - Procedures that test the CDIs conform to the integrity constraints
- TPs: transaction procedures
 - Procedures that take the system from one valid state to another