Lecture 8 October 13, 2023

DES Modes

- Electronic Code Book Mode (ECB)
- Encipher each block independently
- Cipher Block Chaining Mode (CBC)
- Xor each block with previous ciphertext block
- Requires an initialization vector for the first one
- Encrypt-Decrypt-Encrypt (2 keys: k, k)
- $c=\operatorname{DES}_{k}\left(\operatorname{DES}_{k^{\prime}}^{-1}\left(\operatorname{DES}_{k}(m)\right)\right)$
- Triple DES(3 keys: $\left.k, k^{\prime}, k^{\prime}\right)$
- $c=\operatorname{DES}_{k}\left(\operatorname{DES}_{k^{\prime}}\left(\operatorname{DES}_{k^{\prime}}(m)\right)\right)$

Current Status of DES

- Design for computer system, associated software that could break any DES-enciphered message in a few days published in 1998
- Several challenges to break DES messages solved using distributed computing
- NIST selected Rijndael as Advanced Encryption Standard, successor to DES
- Designed to withstand attacks that were successful on DES
- DES officially withdrawn in 2005

Advanced Encryption Standard

- Competition announces in 1997 to select successor to DES
- Successor needed to be available for use without payment (no royalties, etc.)
- Successor must encipher 128-bit blocks with keys of lengths 128, 192, and 256
- 3 workshops in which proposed successors were presented, analyzed
- Rijndael selected as successor to DES, called the Advanced Encryption Standard (AES)
- Other finalists were Twofish, Serpent, RC6, MARS

Overview of the AES

- A block cipher:
- encrypts blocks of 128 bits using a 128, 192, or 256 bit key
- outputs 128 bits of ciphertext
- A product cipher
- basic unit is the bit
- performs both substitution and transposition (permutation) on the bits
- Cipher consists of rounds (iterations) each with a round key generated from the user-supplied key
- If 128 bit key, then 10 rounds
- If 192 bit key, then 12 rounds
- If 256 bit key, then 14 rounds

Structure of the AES: Encryption

- Input placed into a state array, which is then combined with zeroth round key
- Treat state array as a 4×4 matrix, each entry being a byte
- Round begins; new values substituted for each byte of the state array
- Rows then cyclically shifted
- Each column independently altered
- Not done in last round
- Result xor'ed with round key
- After last round, state array is the encrypted input

Structure of the AES: Decryption

- Round key schedule reversed
- Input placed into a state array, which is then combined with zeroth round key (of reversed schedule)
- Round begins; rows cyclically shifted, then new values substituted for each byte of the state array
- Inverse rotation, substitution of encryption
- Result xor'ed with round key (of reversed schedule)
- Each column independently altered
- Inverse of encryption; this is not done in last round
- After last round, state array is the decrypted input

Analysis of AES

- Designed to withstand attacks that the DES is vulnerable to
- All details of design made public, unlike with the DES
- In particular, those of the substitutions (S-boxes) were described
- After 2 successive rounds, every bit in the state array depends an every bit in the state array 2 rounds ago
- No weak, semi-weak keys

AES Modes

- DES modes also work with AES
- EDE and "Triple-AES" not used
- Extended block size makes this unnecessary
- New counter mode CTR added

Public Key Cryptography

- Two keys
- Private key known only to individual
- Public key available to anyone
- Public key, private key inverses
- Idea
- Confidentiality: encipher using public key, decipher using private key
- Integrity/authentication: encipher using private key, decipher using public one

Requirements

1. It must be computationally easy to encipher or decipher a message given the appropriate key
2. It must be computationally infeasible to derive the private key from the public key
3. It must be computationally infeasible to determine the private key from a chosen plaintext attack

RSA

- First described publicly in 1978
- Unknown at the time: Clifford Cocks developed a similar cryptosystem in 1973, but it was classified until recently
- Exponentiation cipher
- Relies on the difficulty of determining the number of numbers relatively prime to a large integer n

Background

- Totient function $\phi(\mathrm{n})$
- Number of positive integers less than n and relatively prime to n
- Relatively prime means with no factors in common with n
- Example: $\phi(10)=4$
- 1, 3, 7, 9 are relatively prime to 10
- Example: $\phi(21)=12$
- $1,2,4,5,8,10,11,13,16,17,19,20$ are relatively prime to 21

Algorithm

- Choose two large prime numbers p, q
- Let $n=p q$; then $\phi(n)=(p-1)(q-1)$
- Choose $e<n$ such that e is relatively prime to $\phi(n)$.
- Compute d such that $e d \bmod \phi(n)=1$
- Public key: (e, n); private key: d
- Encipher: $c=m^{e} \bmod n$
- Decipher: $m=c^{d} \bmod n$

Example: Confidentiality

- Take $p=181, q=1451$, so $n=262631$ and $\phi(n)=261000$
- Alice chooses $e=154993$, making $d=95857$
- Bob wants to send Alice secret message PUPPIESARESMALL (152015 150804180017041812001111); encipher using public key
- $152015^{154993} \bmod 262631=220160$
- $150804^{154993} \bmod 262631=135824$
- $180017^{154993} \bmod 262631=252355$
- $041812^{154993} \bmod 262631=245799$
- $001111_{154993} \bmod 262631=070707$
- Bob sends 220160135824252355245799070707
- Alice uses her private key to decipher it

Example: Authentication/Integrity

- Alice wants to send Bob the message PUPPIESARESMALL in such a way that Bob knows it comes from her and nothing was changed during the transmission
- Same public, private keys as before
- Encipher using private key:
- $152015^{95857} \bmod 262631=072798$
- $150804^{95857} \bmod 262631=259757$
- $180017^{95857} \bmod 262631=256449$
- $041812^{95857} \bmod 262631=089234$
- $001111^{95857} \bmod 262631=037974$
- Alice sends 072798259757256449089234037974
- Bob receives, uses Alice's public key to decipher it

Example: Both (Sending)

- Same n as for Alice; Bob chooses $e=45593$, making $d=235457$
- Alice wants to send PUPPIESARESMALL (152015 150804180017 041812 001111) confidentially and authenticated
- Encipher:
- $\left(152015^{95857} \bmod 262631\right)^{45593} \bmod 262631=249123$
- $\left(150804^{95857} \bmod 262631\right)^{45593} \bmod 262631=166008$
- $\left(180017^{95857} \bmod 262631\right)^{45593} \bmod 262631=146608$
- (04181295857 mod 262631) ${ }^{45593} \bmod 262631=092311$
- $\left(001111^{95857} \bmod 262631\right)^{45593} \bmod 262631=096768$
- So Alice sends 249123166008146608092311096768

Example: Both (Receiving)

- Bob receives 249123166008146608092311096768
- Decipher:
- $\left(249123^{235457} \bmod 262631\right)^{154993} \bmod 262631=152012$
- (166008 $\left.{ }^{235457} \bmod 262631\right)^{154993} \bmod 262631=150804$
- $\left(146608^{235457} \bmod 262631\right)^{154993} \bmod 262631=180017$
- $\left(092311^{235457} \bmod 262631\right)^{154993} \bmod 262631=041812$
- $\left(096768^{235457} \bmod 262631\right)^{154993} \bmod 262631=001111$
- So Alice sent him 152015150804180017041812001111
- Which translates to PUP PIE SAR ESM ALL or PUPPIESARESMALL

Security Services

- Confidentiality
- Only the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key
- Authentication
- Only the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

More Security Services

- Integrity
- Enciphered letters cannot be changed undetectably without knowing private key
- Non-Repudiation
- Message enciphered with private key came from someone who knew it

Warnings

- Encipher message in blocks considerably larger than the examples here
- If only characters per block, RSA can be broken using statistical attacks (just like symmetric cryptosystems)
- Attacker cannot alter letters, but can rearrange them and alter message meaning
- Example: reverse enciphered message of text ON to get NO

Checksums

- Mathematical function to generate a set of k bits from a set of n bits (where $k \leq n$).
- k is smaller than n except in unusual circumstances
- Example: ASCII parity bit
- ASCII has 7 bits; 8th bit is "parity"
- Even parity: even number of 1 bits
- Odd parity: odd number of 1 bits

Example Use

- Bob receives " 10111101 " as bits.
- Sender is using even parity; 61 bits, so character was received correctly
- Note: could be garbled, but 2 bits would need to have been changed to preserve parity
- Sender is using odd parity; even number of 1 bits, so character was not received correctly

Definition of Cryptographic Checksum

Cryptographic checksum $h: A \rightarrow B$:

1. For any $x \in A, h(x)$ is easy to compute
2. For any $y \in B$, it is computationally infeasible to find $x \in A$ such that $h(x)=y$
3. It is computationally infeasible to find two inputs $x, x^{\prime} \in A$ such that $x \neq x^{\prime}$ and $h(x)=h\left(x^{\prime}\right)$

- Alternate form (stronger): Given any $x \in A$, it is computationally infeasible to find a different $x^{\prime} \in A$ such that $h(x)=h\left(x^{\prime}\right)$.

Collisions

- If $x \neq x^{\prime}$ and $h(x)=h\left(x^{\prime}\right), x$ and x^{\prime} are a collision
- Pigeonhole principle: if there are n containers for $n+1$ objects, then at least one container will have at least 2 objects in it.
- Application: if there are 32 files and 8 possible cryptographic checksum values, at least one value corresponds to at least 4 files

Keys

- Keyed cryptographic checksum: requires cryptographic key
- AES in chaining mode: encipher message, use last n bits. Requires a key to encipher, so it is a keyed cryptographic checksum.
- Keyless cryptographic checksum: requires no cryptographic key
- SHA-512, SHA-3 are examples; older ones include MD4, MD5, RIPEM, SHA-0, and SHA-1 (methods for constructing collisions are known for these)

HMAC

- Make keyed cryptographic checksums from keyless cryptographic checksums
- h keyless cryptographic checksum function that takes data in blocks of b bytes and outputs blocks of / bytes. k^{\prime} is cryptographic key of length b bytes
- If short, pad with 0 bytes; if long, hash to length b
- ipad is 00110110 repeated b times
- opad is 01011100 repeated b times
- HMAC-h $(k, m)=h\left(k^{\prime} \oplus\right.$ opad || $\left.h\left(k^{\prime} \oplus i p a d \| m\right)\right)$
- \oplus exclusive or, || concatenation

Strength of HMAC-h

- Depends on the strength of the hash function h
- Attacks on HMAC-MD4, HMAC-MD5, HMAC-SHA-0, and HMAC-SHA-1 recover partial or full keys
- Note all of MD4, MD5, SHA-0, and SHA-1 have been broken

