Lecture 12 October 23, 2023

Challenge-Response

User, system share a secret function *f* (in practice, *f* is a known function with unknown parameters, such as a cryptographic key)

One-Time Passwords

- Password that can be used exactly once
 - After use, it is immediately invalidated
- Challenge-response mechanism
 - Challenge is number of authentications; response is password for that particular number

• Problems

- Synchronization of user, system
- Generation of good random passwords
- Password distribution problem

- One-time password scheme based on idea of Lamport
- *h* one-way hash function (SHA-256, for example)
- User chooses initial seed k
- System calculates:

$$h(k) = k_1, h(k_1) = k_2, ..., h(k_{n-1}) = k_n$$

• Passwords are reverse order:

$$p_1 = k_n, p_2 = k_{n-1}, ..., p_{n-1} = k_2, p_n = k_1$$

S/Key Protocol

System stores maximum number of authentications n, number of next authentication i, last correctly supplied password p_{i-1} .

Hardware Support

Token-based

- Used to compute response to challenge
 - May encipher or hash challenge
 - May require PIN from user
- Temporally-based
 - Every minute (or so) different number shown
 - Computer knows what number to expect when
 - User enters number and fixed password

Biometrics

- Automated measurement of biological, behavioral features that identify a person
 - Fingerprints: optical or electrical techniques
 - Voices: speaker verification or recognition
 - Eyes: patterns in irises unique
 - Faces: image, or specific characteristics like distance from nose to chin
 - Keystroke dynamics: believed to be unique

Location

- If you know where user is, validate identity by seeing if person is where the user is
 - Requires a device saying where the user is, like a smart phone

Multi-Factor Authentication

- Example: "where you are" also requires entity to have LSS and GPS, so also "what you have"
- Can assign different methods to different tasks
 - As users perform more and more sensitive tasks, must authenticate in more and more ways (presumably, more stringently) File describes authentication required
 - Also includes controls on access (time of day, *etc*.), resources, and requests to change passwords
 - Pluggable Authentication Modules

Multi-Factor Authentication

- Example: "where you are" also requires entity to have LSS and GPS, so also "what you have"
- Can assign different methods to different tasks
 - As users perform more and more sensitive tasks, must authenticate in more and more ways (presumably, more stringently) File describes authentication required
 - Also includes controls on access (time of day, *etc*.), resources, and requests to change passwords
 - Pluggable Authentication Modules

Identity

- *Principal*: a unique entity
- Identity: specifies a principal
- *Authentication*: binding of a principal to a representation of identity internal to the system
 - All access, resource allocation decisions assume binding is correct

Files and Objects

- Identity depends on system containing object
- Different names for one object
 - Human use, eg. file name
 - Process use, eg. file descriptor or handle
 - Kernel use, eg. file allocation table entry, inode

More Names

- Different names for one context
 - Human: aliases, relative vs. absolute path names
 - Kernel: deleting a file identified by name can mean two things:
 - Delete the object that the name identifies
 - Delete the name given, and do not delete actual object until *all* names have been deleted
- Semantics of names may differ

Example: Names and Descriptors

- Interpretation of UNIX file name
 - Kernel maps name into an inode using iterative procedure
 - Same name can refer to different objects at different times without being deallocated
 - Causes race conditions
- Interpretation of UNIX file descriptor
 - Refers to a specific inode
 - Refers to same inode from creation to deallocation

Example: Different Systems

- Object name must encode location or pointer to location
 - *SSH* style: *host:object*
 - URLs: *protocol://host/object*
- Need not name actual object
 - SSH style may name pointer (link) to actual object
 - URL may forward to another host

Users

- Exact representation tied to system
- Example: UNIX/Linux systems
 - Login name: used to log in to system
 - Logging usually uses this name
 - User identification number (UID): unique integer assigned to user
 - Kernel uses UID to identify users
 - One UID per login name, but multiple login names may have a common UID

Multiple Identities

- UNIX systems again
 - Real UID: user identity at login, but changeable
 - Effective UID: user identity used for access control
 - Setuid changes effective UID
 - Saved UID: UID before last change of UID
 - Used to implement least privilege
 - Work with privileges, drop them, reclaim them later
 - Audit/Login UID: user identity used to track original UID
 - Cannot be altered; used to tie actions to login identity

Groups

- Used to share access privileges
- First model: alias for set of principals
 - Processes assigned to groups
 - Processes stay in those groups for their lifetime
- Second model: principals can change groups
 - Rights due to old group discarded; rights due to new group added

Roles

- Group with membership tied to function
 - Rights given are consistent with rights needed to perform function
- Uses second model of groups
- Example: DG/UX
 - User *root* does not have administration functionality
 - System administrator privileges are in *sysadmin* role
 - Network administration privileges are in *netadmin* role
 - Users can assume either role as needed

Naming and Certificates

- Certificates issued to a principal
 - Principal uniquely identified to avoid confusion
- Problem: names may be ambiguous
 - Does the name "Matt Bishop" refer to:
 - The author of this book?
 - A programmer in Australia?
 - A stock car driver in Muncie, Indiana?
 - Someone else who was named "Matt Bishop"

Disambiguating Identity

- Include ancillary information in names
 - Enough to identify principal uniquely
 - X.509v4 Distinguished Names do this
- Example: X.509v4 Distinguished Names
 - /O=University of California/OU=Davis campus/OU=Department of Computer Science/CN=Matt Bishop/

refers to the Matt Bishop (CN is *common name*) in the Department of Computer Science (OU is *organizational unit*) on the Davis Campus of the University of California (O is *organization*)

CAs and Policies

- Matt Bishop wants a certificate from Certs-from-Us
 - How does Certs-from-Us know this is "Matt Bishop"?
 - CA's *authentication policy* says what type and strength of authentication is needed to identify Matt Bishop to satisfy the CA that this is, in fact, Matt Bishop
 - Will Certs-from-Us issue this "Matt Bishop" a certificate once he is suitably authenticated?
 - CA's *issuance policy* says to which principals the CA will issue certificates

Example: Verisign CAs

- Class 1 CA issued certificates to individuals
 - Authenticated principal by email address
 - Idea: certificate used for sending, receiving email with various security services at that address
- Class 2 CA issued certificates to individuals
 - Authenticated by verifying user-supplied real name and address through an online database
 - Idea: certificate used for online purchasing

Example: Verisign CAs

- Class 3 CA issued certificates to individuals
 - Authenticated by background check from investigative service
 - Idea: higher level of assurance of identity than Class 1 and Class 2 CAs
- Fourth CA issued certificates to web servers
 - Same authentication policy as Class 3 CA
 - Idea: consumers using these sites had high degree of assurance the web site was not spoofed