Outline for October 27, 2023

Reading: text, §16.2–16.5,17

Assignments: Homework 3, due November 6; Background Research, due November 3 (note extension)

1. Access Control Lists
 (a) Full access control lists
 (b) Issues in the way lists work
 (c) Revocation issue

2. Capabilities
 (a) Capability-based addressing
 (b) Capabilities as security mechanisms
 (c) Inheritance of C-Lists

3. MULTICS ring mechanism
 (a) Rings, gates, ring-crossing faults
 (b) Used for both data and procedures; rights are REWA
 \((b_1, b_2)\) access bracket—can access freely; \((b_3, b_4)\) call bracket—can call segment through gate; so if \(a\)'s access bracket is (32, 35) and its call bracket is (35, 39), then assuming permission mode (REWA) allows access, a procedure in:
 rings 0–31: can access \(a\), but ring-crossing fault occurs
 rings 32–35: can access \(a\), no ring-crossing fault
 rings 36–39: can access \(a\), provided a valid gate is used as an entry point
 rings 40–63: cannot access \(a\)
 (c) If the procedure is accessing a data segment \(d\), no call bracket allowed; given the above, assuming permission mode (REWA) allows access, a procedure in:
 rings 0–32: can access \(d\)
 rings 33–35: can access \(d\), but cannot write to it (W or A)
 rings 36–63: cannot access \(d\)

4. Lock and Key
 (a) Associate with each object a lock; associate with each process that has access to object a key (it’s a cross between ACLs and C-Lists)
 (b) Example: cryptographic (Gifford). \(X\) object enciphered with key \(K\). Associate an opener \(R\) with \(X\). Then:
 - **OR-Access:** \(K\) can be recovered with any \(D_i\) in a list of \(n\) deciphering transformations, so
 \(R = (E_1(K), E_2(K), \ldots, E_n(K))\) and any process with access to any of the \(D_i\)'s can access the file
 - **AND-Access:** need all \(n\) deciphering functions to get \(K\): \(R = E_1(E_2(\ldots E_n(K) \ldots))\)