Lecture 23 November 22, 2023

Entropy for Information Flow

- Random variables
- Joint probability
- Conditional probability
- Entropy (or uncertainty in bits)
- Joint entropy
- Conditional entropy
- Applying it to secrecy of ciphers

Random Variable

- Variable that represents outcome of an event
- X represents value from roll of a fair die; probability for rolling n : $p(X=n)=1 / 6$
- If die is loaded so 2 appears twice as often as other numbers, $p(X=2)=2 / 7$ and, for $n \neq 2, p(X=n)=1 / 7$
- Note: $p(X)$ means specific value for X doesn't matter
- Example: all values of X are equiprobable

Joint Probability

- Joint probability of X and $Y, p(X, Y)$, is probability that X and Y simultaneously assume particular values
- If X, Y independent, $p(X, Y)=p(X) p(Y)$
- Roll die, toss coin
- $p(X=3, Y=$ heads $)=p(X=3) p(Y=$ heads $)=1 / 6 \times 1 / 2=1 / 12$

Two Dependent Events

- $X=$ roll of red die, $Y=$ sum of red, blue die rolls

$$
\begin{array}{llll}
p(Y=2)=1 / 36 & p(Y=3)=2 / 36 & p(Y=4)=3 / 36 & p(Y=5)=4 / 36 \\
p(Y=6)=5 / 36 & p(Y=7)=6 / 36 & p(Y=8)=5 / 36 & p(Y=9)=4 / 36 \\
p(Y=10)=3 / 36 & p(Y=11)=2 / 36 & p(Y=12)=1 / 36 &
\end{array}
$$

- Formula:

$$
p(X=1, Y=11)=p(X=1) p(Y=11)=(1 / 6)(2 / 36)=1 / 108
$$

- But if the red die (X) rolls 1 , the most their sum (Y) can be is 7
- The problem is X and Y are dependent

Conditional Probability

- Conditional probability of X given $Y, p(X \mid Y)$, is probability that X takes on a particular value given Y has a particular value
- Continuing example ...
- $p(Y=7 \mid X=1)=1 / 6$
- $p(Y=7 \mid X=3)=1 / 6$

Relationship

- $p(X, Y)=p(X \mid Y) p(Y)=p(X) p(Y \mid X)$
- Example:

$$
p(X=3, Y=8)=p(X=3 \mid Y=8) p(Y=8)=(1 / 5)(5 / 36)=1 / 36
$$

- Note: if X, Y independent:

$$
p(X \mid Y)=p(X)
$$

Entropy

- Uncertainty of a value, as measured in bits
- Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
- Therefore entropy of X is $H(X)=1$
- Formal definition: random variable X, values x_{1}, \ldots, x_{n}; so $\Sigma_{i} \mathrm{p}\left(X=x_{i}\right)=1$; then entropy is:

$$
H(X)=-\Sigma_{i} p\left(X=x_{i}\right) \lg p\left(X=x_{i}\right)
$$

Heads or Tails?

- $H(X)=-p(X=$ heads $) \lg p(X=$ heads $)-p(X=$ tails $) \lg p(X=$ tails $)$

$$
\begin{aligned}
& =-(1 / 2) \lg (1 / 2)-(1 / 2) \lg (1 / 2) \\
& =-(1 / 2)(-1)-(1 / 2)(-1)=1
\end{aligned}
$$

- Confirms previous intuitive result

n-Sided Fair Die

$$
H(X)=-\Sigma_{i} p\left(X=x_{i}\right) \lg p\left(X=x_{i}\right)
$$

As $p\left(X=x_{i}\right)=1 / n$, this becomes
$H(X)=-\Sigma_{i}(1 / n) \lg (1 / n)=-n(1 / n)(-\lg n)$
so
$H(X)=\lg n$
which is the number of bits in n, as expected

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul
W represents the winner. What is its entropy?

- $w_{1}=$ Ann,$w_{2}=$ Pam,$w_{3}=$ Paul
- $p\left(W=w_{1}\right)=p\left(W=w_{2}\right)=2 / 5, p\left(W=w_{3}\right)=1 / 5$
- So $H(W)=-\Sigma_{i} p\left(W=w_{i}\right) \lg p\left(W=w_{i}\right)$

$$
\begin{aligned}
& =-(2 / 5) \lg (2 / 5)-(2 / 5) \lg (2 / 5)-(1 / 5) \lg (1 / 5) \\
& =-(4 / 5)+\lg 5 \approx-1.52
\end{aligned}
$$

- If all equally likely to win, $H(W)=\lg 3 \approx 1.58$

Joint Entropy

- X takes values from $\left\{x_{1}, \ldots, x_{n}\right\}$, and $\Sigma_{i} p\left(X=x_{i}\right)=1$
- Y takes values from $\left\{y_{1}, \ldots, y_{m}\right\}$, and $\Sigma_{i} p\left(Y=y_{i}\right)=1$
- Joint entropy of X, Y is:

$$
H(X, Y)=-\Sigma_{j} \Sigma_{i} p\left(X=x_{i}, Y=y_{j}\right) \lg p\left(X=x_{i}, Y=y_{j}\right)
$$

Example

X : roll of fair die, Y : flip of coin
As X, Y are independent:

$$
p(X=1, Y=\text { heads })=p(X=1) p(Y=\text { heads })=1 / 12
$$

and

$$
\begin{aligned}
H(X, Y) & =-\Sigma_{j} \Sigma_{i} p\left(X=x_{i}, Y=y_{j}\right) \lg p\left(X=x_{i}, Y=y_{j}\right) \\
& =-2[6[(1 / 12) \lg (1 / 12)]]=\lg 12
\end{aligned}
$$

Conditional Entropy (Equivocation)

- X takes values from $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\Sigma_{i} p\left(X=x_{i}\right)=1$
- Y takes values from $\left\{y_{1}, \ldots, y_{m}\right\}$ and $\Sigma_{i} p\left(Y=y_{i}\right)=1$
- Conditional entropy of X given $Y=y_{j}$ is:

$$
H\left(X \mid Y=y_{j}\right)=-\Sigma_{i} p\left(X=x_{i} \mid Y=y_{j}\right) \lg p\left(X=x_{i} \mid Y=y_{j}\right)
$$

- Conditional entropy of X given Y is:

$$
H(X \mid Y)=-\Sigma_{j} p\left(Y=y_{j}\right) \Sigma_{i} p\left(X=x_{i} \mid Y=y_{j}\right) \lg p\left(X=x_{i} \mid Y=y_{j}\right)
$$

Example

- X roll of red die, Y sum of red, blue roll
- Note $p(X=1 \mid Y=2)=1, p(X=i \mid Y=2)=0$ for $i \neq 1$
- If the sum of the rolls is 2 , both dice were 1
- Thus

$$
H(X \mid Y=2)=-\Sigma_{i} p\left(X=x_{i} \mid Y=2\right) \lg p\left(X=x_{i} \mid Y=2\right)=0
$$

Example (con't)

- Note $p(X=i, Y=7)=1 / 6$
- If the sum of the rolls is 7 , the red die can be any of $1, \ldots, 6$ and the blue die must be 7-roll of red die
- $H(X \mid Y=7)=-\Sigma_{i} p\left(X=x_{i} \mid Y=7\right) \lg p\left(X=x_{i} \mid Y=7\right)$

$$
=-6(1 / 6) \lg (1 / 6)=\lg 6
$$

Example: Perfect Secrecy

- Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
- $M=\left\{m_{1}, \ldots, m_{n}\right\}$ set of messages
- $C=\left\{c_{1}, \ldots, c_{n}\right\}$ set of messages
- Cipher $c_{i}=E\left(m_{i}\right)$ achieves perfect secrecy if $H(M \mid C)=H(M)$

Basics of Information Flow

- Bell-LaPadula Model embodies information flow policy
- Given compartments A, B, info can flow from A to B iff B dom A
- So does Biba Model
- Given compartments A, B, info can flow from A to B iff A dom B
- Variables x, y assigned compartments $\underline{x}, \underline{y}$ as well as values
- Confidentiality (Bel-LaPadula): if $\underline{x}=A, \underline{y}=B$, and B dom A, then $y:=x$ allowed but not x := y
- Integrity (Biba): if $\underline{x}=A, \underline{y}=B$, and A dom B, then $x:=y$ allowed but not $y:=x$
- For now, focus on confidentiality (Bell-LaPadula)
- We'll get to integrity later

Entropy and Information Flow

- Idea: information flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c
- Formally:
- s time before execution of c, t time after
- $H\left(x_{s} \mid y_{t}\right)<H\left(x_{s} \mid y_{s}\right)$
- If no y at time s, then $H\left(x_{s} \mid y_{t}\right)<H\left(x_{s}\right)$

Example 1

- Command is $x:=y+z$; where:
- x does not exist initially (that is, has no value)
- $0 \leq y \leq 7$, equal probability
- $z=1$ with probability $1 / 2, z=2$ or 3 with probability $1 / 4$ each
- s state before command executed; t, after; so
- $H\left(y_{s}\right)=H\left(y_{t}\right)=-8(1 / 8) \lg (1 / 8)=3$
- You can show that $H\left(y_{s} \mid x_{t}\right)=(3 / 32) \lg 3+9 / 8 \approx 1.274<3=H\left(y_{s}\right)$
- Thus, information flows from y to x

Example 2

- Command is

$$
\text { if } x=1 \text { then } y:=0 \text { else } y:=1 \text {; }
$$

where x, y equally likely to be either 0 or 1

- $H\left(x_{s}\right)=1$ as x can be either 0 or 1 with equal probability
- $H\left(x_{s} \mid y_{t}\right)=0$ as if $y_{t}=1$ then $x_{s}=0$ and vice versa
- Thus, $H\left(x_{s} \mid y_{t}\right)=0<1=H\left(x_{s}\right)$
- So information flowed from x to y

Implicit Flow of Information

- Information flows from x to y without an explicit assignment of the form y := $f(x)$
- $f(x)$ an arithmetic expression with variable x
- Example from previous slide:

$$
\text { if } x=1 \text { then } y:=0 \text { else } y:=1 \text {; }
$$

- So must look for implicit flows of information to analyze program

Notation

- \underline{x} means class of x
- In Bell-LaPadula based system, same as "label of security compartment to which x belongs"
- $\underline{x} \leq \underline{y}$ means "information can flow from an element in class of x to an element in class of y
- Or, "information with a label placing it in class \underline{x} can flow into class \underline{y} "

Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
- If a flow could violate policy (but may not), it is unauthorized
- No unauthorized path along which information could flow remains undetected
- Set of statements certified with respect to information flow policy if flows in set of statements do not violate that policy

Example

if $x=1$ then $y:=a$;
else y := b;

- Information flows from x and a to y, or from x and b to y
- Certified only if $\underline{x} \leq \underline{y}$ and $\underline{a} \leq \boldsymbol{y}$ and $\underline{b} \leq \underline{y}$
- Note flows for both branches must be true unless compiler can determine that one branch will never be taken

Declarations

- Notation:

$$
x: \text { int class }\{A, B\}
$$

means x is an integer variable with security class at least lub\{ $A, B\}$, so
$\operatorname{lub}\{\mathrm{A}, \mathrm{B}\} \leq \underline{x}$

- Distinguished classes Low, High
- Constants are always Low

Input Parameters

- Parameters through which data passed into procedure
- Class of parameter is class of actual argument

$$
i_{p}: \text { type class }\left\{i_{p}\right\}
$$

Output Parameters

- Parameters through which data passed out of procedure
- If data passed in, called input/output parameter
- As information can flow from input parameters to output parameters, class must include this:

$$
o_{p}: \text { type class }\left\{r_{1}, \ldots, r_{n}\right\}
$$

where r_{i} is class of ith input or input/output argument

Example

proc sum(x: int class \{ A \};

var out: int class \{ A, B \});
begin

$$
\text { out }:=\text { out }+x \text {; }
$$

end;

- Require $\underline{x} \leq \underline{\text { out }}$ and out $\leq \underline{\text { out }}$

Array Elements

- Information flowing out:

$$
\ldots:=a[i]
$$

Value of $i, a[i]$ both affect result, so class is lub $\{\underline{a[i]}, \underline{i}\}$

- Information flowing in:

$$
a[i] \quad:=\ldots
$$

- Only value of $a[i]$ affected, so class is $\underline{a[i]}$

Assignment Statements

$x:=y+z ;$

- Information flows from y, z to x, so this requires $\operatorname{lub}\{\underline{y}, \underline{z}\} \leq \underline{x}$

More generally:
$y:=f\left(x_{1}, \ldots, x_{n}\right)$

- the relation lub $\left\{\underline{x}_{1}, \ldots, x_{n}\right\} \leq \underline{y}$ must hold

Compound Statements

$x:=y+z ; a:=b^{*} c-x ;$

- First statement: $\operatorname{lub}\{\underline{y}, \underline{z}\} \leq \underline{x}$
- Second statement: $\operatorname{lub}\{\underline{b}, \underline{c}, \underline{x}\} \leq \underline{a}$
- So, both must hold (i.e., be secure)

More generally:
$S_{1} ; \ldots S_{n} ;$

- Each individual S_{i} must be secure

Conditional Statements

if $x+y<z$ then $a:=b$ else $d:=b * c-x ;$ end

- Statement executed reveals information about $x, y, z, \operatorname{so} \operatorname{lub}\{\underline{x}, \underline{y}, \underline{z}\} \leq$ $\operatorname{glb}\{\underline{a}, \underline{d}\}$

More generally:
if $f\left(x_{1}, \ldots, X_{n}\right)$ then S_{1} else S_{2}; end

- S_{1}, S_{2} must be secure
- $\operatorname{lub}\left\{\underline{x}_{1}, \ldots, \underline{x}_{n}\right\} \leq \operatorname{glb}\left\{\underline{y} \mid y\right.$ target of assignment in $\left.S_{1}, S_{2}\right\}$

Iterative Statements

while $i<n$ do begin $a[i]:=b[i] ; i:=i+1 ;$ end

- Same ideas as for "if", but must terminate

More generally:
while $f\left(x_{1}, . . ., x_{n}\right)$ do S;

- Loop must terminate;
- S must be secure
- $\operatorname{lub}\left\{\underline{x}_{1}, \ldots, \underline{x}_{n}\right\} \leq \operatorname{glb}\{\underline{y} \mid y$ target of assignment in $S\}$

Goto Statements

- No assignments
- Hence no explicit flows
- Need to detect implicit flows
- Basic block is sequence of statements that have one entry point and one exit point
- Control in block always flows from entry point to exit point

Example Program

```
proc tm(x: array[1..10][1..10] of integer class {x};
    var y: array[1..10][1..10] of integer class {y});
var i, j: integer class {i};
begin
b
b}\mathrm{ L2: if i > 10 goto L7;
b}\mp@code{j j := 1;
b
b
b6 L6: i := i + 1; goto L2;
b
end;
```

Flow of Control

Immediate Forward Dominators

- Idea: when two paths out of basic block, implicit flow occurs
- Because information says which path to take
- When paths converge, either:
- Implicit flow becomes irrelevant; or
- Implicit flow becomes explicit
- Immediate forward dominator of basic block b (written IFD(b)) is first basic block lying on all paths of execution passing through b

IFD Example

- In previous procedure:
- $\operatorname{IFD}\left(b_{1}\right)=b_{2} \quad$ one path
- IFD $\left(b_{2}\right)=b_{7} \quad b_{2} \rightarrow b_{7}$ or $b_{2} \rightarrow b_{3} \rightarrow b_{6} \rightarrow b_{2} \rightarrow b_{7}$
- $\operatorname{IFD}\left(b_{3}\right)=b_{4} \quad$ one path
- $\operatorname{IFD}\left(b_{4}\right)=b_{6} \quad b_{4} \rightarrow b_{6}$ or $b_{4} \rightarrow b_{5} \rightarrow b_{6}$
- $\operatorname{IFD}\left(b_{5}\right)=b_{4} \quad$ one path
- $\operatorname{IFD}\left(b_{6}\right)=b_{2} \quad$ one path

Requirements

- B_{i} is set of basic blocks along an execution path from b_{i} to $\operatorname{IFD}\left(b_{i}\right)$
- Analogous to statements in conditional statement
- $x_{i 1}, \ldots, x_{i n}$ variables in expression selecting which execution path containing basic blocks in B_{i} used
- Analogous to conditional expression
- Requirements for secure:
- All statements in each basic blocks are secure
- $\operatorname{lub}\left\{\underline{x}_{i 1}, \ldots, \underline{x}_{i n}\right\} \leq \operatorname{glb}\left\{\underline{y} \mid y\right.$ target of assignment in $\left.B_{i}\right\}$

Example of Requirements

Example of Requirements

- Within each basic block:
$b_{1}:$ Low $\leq \underline{i} \quad b_{3}:$ Low $\leq \underline{i} \quad b_{6}: \operatorname{lub}\{\operatorname{Low}, \underline{i}\} \leq \underline{i}$
$\left.b_{5}: \operatorname{lub}\{\underline{x}[i][j], \underline{i}, \dot{i}\} \leq v[j][i]\right\} ; \operatorname{lub}\{\operatorname{Low}, \dot{I}\} \leq \dot{I}$
- Combining, lub $\{\underline{x[i][j]}, i, i\} \leq y[j][i]\}$
- From declarations, true when $\operatorname{lub}\{\underline{x}, \underline{i}\} \leq \underline{y}$
- $B_{2}=\left\{b_{3}, b_{4}, b_{5}, b_{6}\right\}$
- Assignments to $i, j, y[j][i] ;$ conditional is $i \leq 10$
- Requires $\underline{i} \leq \operatorname{glb}\{\underline{i}, \underline{i}, v[j][i]\}$
- From declarations, true when $\underline{i} \leq \underline{y}$

Example (continued)

- $B_{4}=\left\{b_{5}\right\}$
- Assignments to $j, y[j][i]$; conditional is $j \leq 10$
- Requires $i \leq \operatorname{glb}\{j, v[j][i]\}$
- From declarations, means $\underline{i} \leq \downarrow$
- Result:
- Combine lub $\{\underline{x}, \underline{i}\} \leq \underline{y} ; \underline{i} \leq \underline{j} ; \underline{i} \leq \underline{y}$
- Requirement is $\operatorname{lub}\{\underline{x}, \underline{i}\} \leq \underline{y}$

Procedure Calls

```
tm(a, b);
```

From previous slides, to be secure, $\operatorname{lub}\{\underline{x}, \underline{i}\} \leq \underline{y}$ must hold

- In call, x corresponds to a, y to b
- Means that $\operatorname{lub}\{\underline{a}, \underline{i}\} \leq \underline{b}$, or $\underline{a} \leq \underline{b}$

More generally:
proc pn(i_{1}, \ldots, i_{m} : int; var O_{1}, \ldots, O_{n} : int); begin S end;

- S must be secure
- For all j and k, if $\underline{i}_{j} \leq \underline{o}_{k}$, then $\underline{x}_{j} \leq \underline{y}_{k}$
- For all j and k, if $\underline{o}_{j} \leq \underline{o}_{k}$, then $y_{j} \leq \underline{y}_{k}$

