Lecture 23
November 22, 2023
Entropy for Information Flow

- Random variables
- Joint probability
- Conditional probability
- Entropy (or uncertainty in bits)
- Joint entropy
- Conditional entropy
- Applying it to secrecy of ciphers
Random Variable

• Variable that represents outcome of an event
 • X represents value from roll of a fair die; probability for rolling n: $p(X=n) = 1/6$
 • If die is loaded so 2 appears twice as often as other numbers, $p(X=2) = 2/7$
 and, for $n \neq 2$, $p(X=n) = 1/7$

• Note: $p(X)$ means specific value for X doesn’t matter
 • Example: all values of X are equiprobable
Joint Probability

• Joint probability of X and Y, $p(X, Y)$, is probability that X and Y simultaneously assume particular values
 • If X, Y independent, $p(X, Y) = p(X)p(Y)$

• Roll die, toss coin
 • $p(X=3, Y=\text{heads}) = p(X=3)p(Y=\text{heads}) = \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$
Two Dependent Events

• $X = \text{roll of red die}$, $Y = \text{sum of red, blue die rolls}$

 \[
 \begin{align*}
 p(Y=2) &= 1/36 & p(Y=3) &= 2/36 & p(Y=4) &= 3/36 & p(Y=5) &= 4/36 \\
 p(Y=6) &= 5/36 & p(Y=7) &= 6/36 & p(Y=8) &= 5/36 & p(Y=9) &= 4/36 \\
 p(Y=10) &= 3/36 & p(Y=11) &= 2/36 & p(Y=12) &= 1/36
 \end{align*}
 \]

• Formula:

 \[
 p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108
 \]

• But if the red die (X) rolls 1, the most their sum (Y) can be is 7

• The problem is X and Y are dependent
Conditional Probability

• Conditional probability of X given Y, $p(X \mid Y)$, is probability that X takes on a particular value given Y has a particular value

• Continuing example ...
 • $p(Y=7 \mid X=1) = 1/6$
 • $p(Y=7 \mid X=3) = 1/6$
Relationship

\[p(X, Y) = p(X \mid Y) \ p(Y) = p(X) \ p(Y \mid X) \]

Example:
\[p(X=3, Y=8) = p(X=3 \mid Y=8) \ p(Y=8) = (1/5)(5/36) = 1/36 \]

Note: if \(X, Y \) independent:
\[p(X \mid Y) = p(X) \]
Entropy

• Uncertainty of a value, as measured in bits
• Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
 • Therefore entropy of X is $H(X) = 1$
• Formal definition: random variable X, values x_1, \ldots, x_n; so
 $\sum_i p(X = x_i) = 1$; then entropy is:
 $$H(X) = -\sum_i p(X=x_i) \log p(X=x_i)$$
Heads or Tails?

- \(H(X) = -p(X=\text{heads}) \log p(X=\text{heads}) - p(X=\text{tails}) \log p(X=\text{tails}) \)

 \[= - \left(\frac{1}{2} \right) \log \left(\frac{1}{2} \right) - \left(\frac{1}{2} \right) \log \left(\frac{1}{2} \right) \]

 \[= - \left(\frac{1}{2} \right) (-1) - \left(\frac{1}{2} \right) (-1) = 1 \]

- Confirms previous intuitive result
n-Sided Fair Die

$H(X) = -\sum_i p(X = x_i) \lg p(X = x_i)$

As $p(X = x_i) = 1/n$, this becomes

$H(X) = -\sum_i (1/n) \lg (1/ n) = -n(1/n) (-\lg n)$

so

$H(X) = \lg n$

which is the number of bits in n, as expected
Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

W represents the winner. What is its entropy?

- $w_1 = \text{Ann}, w_2 = \text{Pam}, w_3 = \text{Paul}$
- $p(W=w_1) = p(W=w_2) = 2/5, p(W=w_3) = 1/5$

- So $H(W) = -\sum_i p(W=w_i) \lg p(W=w_i)$

 $= -(2/5) \lg (2/5) -(2/5) \lg (2/5) -(1/5) \lg (1/5)$

 $= -(4/5) + \lg 5 \approx -1.52$

- If all equally likely to win, $H(W) = \lg 3 \approx 1.58$
Joint Entropy

• X takes values from $\{ x_1, \ldots, x_n \}$, and $\sum_i p(X=x_i) = 1$
• Y takes values from $\{ y_1, \ldots, y_m \}$, and $\sum_i p(Y=y_i) = 1$
• Joint entropy of X, Y is:

$$H(X, Y) = -\sum_j \sum_i p(X=x_i, Y=y_j) \log p(X=x_i, Y=y_j)$$
Example

\(X\): roll of fair die, \(Y\): flip of coin

As \(X\), \(Y\) are independent:

\[
p(X=1, Y=\text{heads}) = p(X=1) \cdot p(Y=\text{heads}) = \frac{1}{12}
\]

and

\[
H(X, Y) = -\sum_j \sum_i p(X=x_i, Y=y_j) \lg p(X=x_i, Y=y_j)
\]

\[= -2 \left[6 \left[\frac{1}{12} \lg \frac{1}{12} \right] \right] = \lg 12\]
Conditional Entropy (Equivocation)

• X takes values from $\{ x_1, \ldots, x_n \}$ and $\sum_i p(X=x_i) = 1$
• Y takes values from $\{ y_1, \ldots, y_m \}$ and $\sum_i p(Y=y_i) = 1$
• Conditional entropy of X given $Y=y_j$ is:
 $$H(X \mid Y=y_j) = -\sum_i p(X=x_i \mid Y=y_j) \lg p(X=x_i \mid Y=y_j)$$
• Conditional entropy of X given Y is:
 $$H(X \mid Y) = -\sum_j p(Y=y_j) \sum_i p(X=x_i \mid Y=y_j) \lg p(X=x_i \mid Y=y_j)$$
Example

• X roll of red die, Y sum of red, blue roll
• Note $p(X=1 \mid Y=2) = 1$, $p(X=i \mid Y=2) = 0$ for $i \neq 1$
 • If the sum of the rolls is 2, both dice were 1
• Thus

$$H(X \mid Y=2) = -\sum_i p(X=x_i \mid Y=2) \log p(X=x_i \mid Y=2) = 0$$
Example (con’t)

• Note $p(X=i, Y=7) = 1/6$
 • If the sum of the rolls is 7, the red die can be any of 1, ..., 6 and the blue die must be 7—roll of red die

• $H(X | Y=7) = -\sum_i p(X=x_i | Y=7) \log p(X=x_i | Y=7)$
 $= -6 \left(\frac{1}{6} \right) \log \left(\frac{1}{6} \right) = \log 6$
Example: Perfect Secrecy

• Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
• $M = \{ m_1, \ldots, m_n \}$ set of messages
• $C = \{ c_1, \ldots, c_n \}$ set of messages
• Cipher $c_i = E(m_i)$ achieves perfect secrecy if $H(M \mid C) = H(M)$
Basics of Information Flow

• Bell-LaPadula Model embodies information flow policy
 • Given compartments A, B, info can flow from A to B iff $B \dom A$

• So does Biba Model
 • Given compartments A, B, info can flow from A to B iff $A \dom B$

• Variables x, y assigned compartments x, y as well as values
 • Confidentiality (Bel-LaPadula): if $x = A$, $y = B$, and $B \dom A$, then $y := x$ allowed but not $x := y$
 • Integrity (Biba): if $x = A$, $y = B$, and $A \dom B$, then $x := y$ allowed but not $y := x$

• For now, focus on confidentiality (Bell-LaPadula)
 • We’ll get to integrity later
Entropy and Information Flow

• Idea: information flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c

• Formally:
 • s time before execution of c, t time after
 • $H(x_s \mid y_t) < H(x_s \mid y_s)$
 • If no y at time s, then $H(x_s \mid y_t) < H(x_s)$
Example 1

• Command is $x := y + z$; where:
 • x does not exist initially (that is, has no value)
 • $0 \leq y \leq 7$, equal probability
 • $z = 1$ with probability $1/2$, $z = 2$ or 3 with probability $1/4$ each

• s state before command executed; t, after; so
 • $H(y_s) = H(y_t) = -8(1/8) \log_2 (1/8) = 3$

• You can show that $H(y_s \mid x_t) = (3/32) \log_2 3 + 9/8 \approx 1.274 < 3 = H(y_s)$
 • Thus, information flows from y to x
Example 2

• Command is

\[
\text{if } x = 1 \text{ then } y := 0 \text{ else } y := 1;
\]

where \(x, y \) equally likely to be either 0 or 1

• \(H(x_s) = 1 \) as \(x \) can be either 0 or 1 with equal probability

• \(H(x_s \mid y_t) = 0 \) as if \(y_t = 1 \) then \(x_s = 0 \) and vice versa
 • Thus, \(H(x_s \mid y_t) = 0 < 1 = H(x_s) \)

• So information flowed from \(x \) to \(y \)
Implicit Flow of Information

• Information flows from x to y without an *explicit* assignment of the form $y := f(x)$

 • $f(x)$ an arithmetic expression with variable x

• Example from previous slide:

  ```
  if $x = 1$ then $y := 0$ else $y := 1$;
  ```

• So must look for implicit flows of information to analyze program
Notation

- x means class of x
 - In Bell-LaPadula based system, same as “label of security compartment to which x belongs”
- $x \leq y$ means “information can flow from an element in class of x to an element in class of y”
 - Or, “information with a label placing it in class x can flow into class y”
Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during compilation
• Analysis not precise, but secure
 • If a flow *could* violate policy (but may not), it is unauthorized
 • No unauthorized path along which information could flow remains undetected
• Set of statements *certified* with respect to information flow policy if flows in set of statements do not violate that policy
Example

\[
\text{if } x = 1 \text{ then } y := a;
\]
\[
\text{else } y := b;
\]

• Information flows from \(x\) and \(a\) to \(y\), or from \(x\) and \(b\) to \(y\)

• Certified only if \(x \leq y\) and \(a \leq y\) and \(b \leq y\)
 • Note flows for both branches must be true unless compiler can determine that one branch will \(never\) be taken
Declarations

• Notation:

\[x: \text{int class} \{ A, B \} \]

means \(x \) is an integer variable with security class at least \(lub\{ A, B \} \), so
\(lub\{ A, B \} \leq x \)

• Distinguished classes \(Low, High \)
 • Constants are always \(Low \)
Input Parameters

• Parameters through which data passed into procedure
• Class of parameter is class of actual argument

\[i_p: \text{type class} \{ i_p \} \]
Output Parameters

• Parameters through which data passed out of procedure
 • If data passed in, called input/output parameter
• As information can flow from input parameters to output parameters, class must include this:

\[o_p: \text{type class} \{ r_1, \ldots, r_n \} \]

where \(r_i \) is class of \(i \)th input or input/output argument
Example

\[
\begin{align*}
\text{proc} & \quad \text{sum}(x: \text{ int class } \{ \text{ A } \}); \\
\text{var} & \quad \text{out: int class } \{ \text{ A, B } \}); \\
\text{begin} & \\
\text{out} & \ := \ \text{out} + x; \\
\text{end;}
\end{align*}
\]

• Require \(x \leq \text{out} \) and \(\text{out} \leq \text{out} \)
Array Elements

• Information flowing out:

\[\ldots := a[i] \]

Value of \(i \), \(a[i] \) both affect result, so class is \(\text{lub}\{ a[i], i \} \)

• Information flowing in:

\[a[i] := \ldots \]

• Only value of \(a[i] \) affected, so class is \(a[i] \)
Assignment Statements

\(x := y + z; \)

- Information flows from \(y, z \) to \(x \), so this requires \(\text{lub}\{ y, z \} \leq x \)

More generally:

\(y := f(x_1, \ldots, x_n) \)

- the relation \(\text{lub}\{ x_1, \ldots, x_n \} \leq y \) must hold
Compound Statements

\[x := y + z; \quad a := b * c - x; \]

• First statement: \(\text{lub}\{ y, z \} \leq x \)
• Second statement: \(\text{lub}\{ b, c, x \} \leq a \)
• So, both must hold (i.e., be secure)

More generally:

\[S_1; \quad \ldots \quad S_n; \]

• Each individual \(S_i \) must be secure
Conditional Statements

\[
\text{if } x + y < z \text{ then } a := b \text{ else } d := b \times c - x; \text{ end}
\]

• Statement executed reveals information about \(x, y, z \), so \(\text{lub}\{ x, y, z \} \leq \text{glb}\{ a, d \} \)

More generally:

\[
\text{if } f(x_1, \ldots, x_n) \text{ then } S_1 \text{ else } S_2; \text{ end}
\]

• \(S_1, S_2 \) must be secure

• \(\text{lub}\{ x_1, \ldots, x_n \} \leq \text{glb}\{ y \mid y \text{ target of assignment in } S_1, S_2 \} \)
Iterative Statements

while \(i < n \) do begin \(a[i] := b[i]; \) \(i := i + 1; \) end

• Same ideas as for “if”, but must terminate

More generally:

while \(f(x_1, \ldots, x_n) \) do \(S; \)

• Loop must terminate;
• \(S \) must be secure
• \(\text{lub}\{ x_1, \ldots, x_n \} \leq \text{glb}\{ y \mid y \text{ target of assignment in } S \} \)
Goto Statements

• No assignments
 • Hence no explicit flows

• Need to detect implicit flows

• Basic block is sequence of statements that have one entry point and one exit point
 • Control in block always flows from entry point to exit point
Example Program

\begin{verbatim}
proc tm(x: array[1..10][1..10] of integer class \{x\};
 var y: array[1..10][1..10] of integer class \{y\});
var i, j: integer class \{i\};
begin
 b_1 i := 1;
 b_2 L2: if i > 10 goto L7;
 b_3 j := 1;
 b_4 L4: if j > 10 then goto L6;
 b_5 y[j][i] := x[i][j]; j := j + 1; goto L4;
 b_6 L6: i := i + 1; goto L2;
 b_7 L7:
end;
\end{verbatim}
Flow of Control

$\begin{align*}
b_1 & \rightarrow b_2 \quad i > n \\
b_2 & \rightarrow b_7 \quad i \leq n \\
b_2 & \rightarrow b_3 \quad i \leq n \\
b_3 & \rightarrow b_6 \quad j > n \\
b_6 & \rightarrow b_4 \quad j > n \\
b_4 & \rightarrow b_5 \quad j \leq n \\
b_5 & \rightarrow b_4 \quad j \leq n \\
b_4 & \rightarrow b_2 \quad j \leq n \\
b_2 & \rightarrow b_1 \quad i \leq n \\
\end{align*}$
Immediate Forward Dominators

• Idea: when two paths out of basic block, implicit flow occurs
 • Because information says *which* path to take

• When paths converge, either:
 • Implicit flow becomes irrelevant; or
 • Implicit flow becomes explicit

• *Immediate forward dominator* of basic block b (written $\text{IFD}(b)$) is first basic block lying on all paths of execution passing through b
IFD Example

• In previous procedure:
 • IFD(b_1) = b_2 one path
 • IFD(b_2) = b_7 $b_2 \rightarrow b_7$ or $b_2 \rightarrow b_3 \rightarrow b_6 \rightarrow b_2 \rightarrow b_7$
 • IFD(b_3) = b_4 one path
 • IFD(b_4) = b_6 $b_4 \rightarrow b_6$ or $b_4 \rightarrow b_5 \rightarrow b_6$
 • IFD(b_5) = b_4 one path
 • IFD(b_6) = b_2 one path
Requirements

- \(B_i\) is set of basic blocks along an execution path from \(b_i\) to IFD\((b_i)\)
 - Analogous to statements in conditional statement
- \(x_{i1}, \ldots, x_{in}\) variables in expression selecting which execution path containing basic blocks in \(B_i\) used
 - Analogous to conditional expression
- Requirements for secure:
 - All statements in each basic blocks are secure
 - \(\text{lub}\{x_{i1}, \ldots, x_{in}\} \leq \text{glb}\{y \mid y \text{ target of assignment in } B_i\}\)
Example of Requirements

\[
\begin{align*}
\text{lub}\{ \text{Low}, i \} & \leq j \\
\text{Low} & \leq i \\
\text{lub}\{ \text{Low}, i \} & \leq i \\
\end{align*}
\]

\[
\begin{align*}
&b_1 & & i > n & & b_2 \\
&b_6 & & i \leq n & & b_3 \\
&b_4 & & j > n & & b_5 \\
&b_5 & & j \leq n & & b_6 \\
& & & & & b_3 \\
\end{align*}
\]

\[
\begin{align*}
b_1 & : & i & := 1; \\
b_2 & : & \text{if } i > 10 \text{ goto } L7; \\
b_3 & : & j & := 1; \\
b_4 & : & \text{if } j > 10 \text{ then goto } L6; \\
b_5 & : & y[j][i] & := x[i][j]; \\
& & j & := j + 1; \text{ goto } L4; \\
b_6 & : & i & := i + 1; \text{ goto } L2; \\
b_7 & : & \\
\end{align*}
\]
Example of Requirements

• Within each basic block:
 \[b_1: \text{Low} \leq i \quad b_3: \text{Low} \leq j \quad b_6: \text{lub}\{ \text{Low}, i \} \leq i \]
 \[b_5: \text{lub}\{ x[i][j], i, j \} \leq y[j][i] \}; \text{lub}\{ \text{Low}, i \} \leq i \]
 • Combining, \(\text{lub}\{ x[i][j], i, j \} \leq y[j][i] \}
 • From declarations, true when \(\text{lub}\{ x, i \} \leq y \)

• \(B_2 = \{ b_3, b_4, b_5, b_6 \} \)
 • Assignments to \(i, j, y[j][i] \); conditional is \(i \leq 10 \)
 • Requires \(i \leq \text{glb}\{ i, j, y[j][i] \} \)
 • From declarations, true when \(i \leq y \)
Example (continued)

• $B_4 = \{ b_5 \}$
 • Assignments to $j, y[j][i]$; conditional is $j \leq 10$
 • Requires $j \leq \text{glb}\{ j, y[j][i] \}$
 • From declarations, means $i \leq y$

• Result:
 • Combine $\text{lub}\{ x, i \} \leq y$; $i \leq y$; $i \leq y$
 • Requirement is $\text{lub}\{ x, i \} \leq y$
Procedure Calls

\(tm(a, b)\);

From previous slides, to be secure, \(\text{lub}\{x, i\} \leq y\) must hold

- In call, \(x\) corresponds to \(a\), \(y\) to \(b\)
- Means that \(\text{lub}\{a, i\} \leq b\), or \(a \leq b\)

More generally:

\[\text{proc } pn(i_1, \ldots, i_m: \text{int}; \text{var } o_1, \ldots, o_n: \text{int}); \text{begin } S \text{ end;}\]

- \(S\) must be secure
- For all \(j\) and \(k\), if \(i_j \leq o_k\), then \(x_j \leq y_k\)
- For all \(j\) and \(k\), if \(o_j \leq o_k\), then \(y_j \leq y_k\)