Outline for January 12, 2007

1. Greetings and Felicitations!
2. Take-Grant
 a. Counterpoint to HRU result
 b. Symmetry of take and grant rights
 c. Islands (maximal subject-only rg-connected subgraphs)
 d. Bridges (as a combination of terminal and initial spans)
3. Sharing
 a. Definition: *can share*(*r*, *x*, *y*, *G*) true iff there exists a sequence of protection graphs *G*₀, ..., *G*_n such that *G*₀ |-* G_n using only take, grant, create, remove rules and in *G*_n, there is an edge from *x* to *y* labeled *r*
 b. Theorem: *can share*(*r*, *x*, *y*, *G*) iff there is an edge from *x* to *y* labeled *r* in *G*₀, or all of the following hold:
 i. there is a vertex *y'* with an edge from *y'* to *y* labeled *r*;
 ii. there is a subject *y''* which terminally spans to *y*', or *y''* = *y'*
 iii. there is a subject *x'* which initially spans to *x*, or *x'*= *x*; and
 iv. there is a sequence of islands *I*₁, ..., *I*_n connected by bridges for which *x'* is in *I*₁ and *y'* is in *I*_n.
4. Model Interpretation
 a. ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 b. Theorem: *G*₀ protection graph with exactly one subject, no edges; *R* set of rights. Then *G*₀ |-* G iff *G* is a finite directed graph containing subjects and objects only, with edges labeled from nonempty subsets of *R*, and with at least one subject with no incoming edges
 c. Example: shared buffer managed by trusted third part
5. Stealing
 a. Definition: *can steal*(*r*, *x*, *y*, *G*) true iff there is no edge from *x* to *y* labeled *r* in *G*₀, and there exists a sequence of protection graphs *G*₀, ..., *G*_n such that *G*₀ |-* G_n in which:
 i. *G*_n has an edge from *x* to *y* labeled *r*
 ii. There is a sequence of rule applications *ρ*₁, ..., *ρ*_n such that *G*_i |- *G*_i; and
 iii. For all vertices *v*, *w* in *G*_i, if there is an edge from *v* to *y* in *G*₀ labeled *r*, then *ρ*_i is not of the form “*v* grants (*r* to *y*) to *w*”
 b. Example