Homework 1

Due Date: January 26, 2009

Points: 100

Questions

- 1. (10 points) A respected computer scientist has said that no computer can ever be made secure. Why might she have said this? (*text*, problem 1.14)
- 2. (20 points) Consider a computer system with three users: Alice, Bob, and Cyndy. Alice owns the file *alicerc*, which she, Bob and Cyndy can read. Cyndy and Bob can read and write the file *bobrc*, which Bob owns, but Alice can only read it. Only Cyndy can read and write the file *cyndyrc*, which she owns. Also, assume the owner of each of these files can execute it.
 - (a) Create the corresponding access control matrix.
 - (b) Write a command *addapp* that allows a subject *p* to grant *a* (append) permission to a second user *q* for a file *x* if, and only if, *p* owns *x* and *q* has *w* permission for *x*.
 - (c) Assume that the primitive operation "enter a into A[s,o] is disallowed. This means it cannot be put into a command. The command addapp may be used. Is it possible for the system with initial state as described above to be in a state where Cyndy has a rights over bobrc, but not w rights over bobrc? Either give a sequence of commands that put it into that state, or prove that it cannot enter that state.
 - (d) Write a command *delapp* that allows a subject *p* to delete *a* (append) permission to a second user *q* for a file *x* if, and only if, *p* owns *x*, *q* has *a* permission for *x*, and *q* has either *r* or *w* permission for *x*.
 - (text, problem 2.1, modified)
- 3. (20 points) The proof of Theorem 3–1 states the following: Suppose two subjects s_1 and s_2 are created and the rights in $A[s_1, o_1]$ and $A[s_2, o_2]$ are tested. The same test for $A[s_1, o_1]$ and $A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2]$ will produce the same result. Justify this statement. Would it be true if one could test for the absence of rights as well as for the presence of rights? (*text*, problem 3.1)
- 4. (10 points) Reverse the edge between **d** and **e** in Figure 3–4 so there is an edge labeled g from **d** to **e**. Is $can \bullet share(r, \mathbf{x}, \mathbf{z}, G_0)$ still true? If so, please show a witness; if not, please prove it does not hold.
- 5. (40 points) Let *B* be the set of words associated with bridges, and *C* the set of words associated with connections. Prove the following theorem *in detail*: The predicate $can \bullet know(\mathbf{x}, \mathbf{y}, G_0)$ is true if and only if there exists a sequence of subjects $\mathbf{u}_1, \ldots, \mathbf{u}_n \in G_0$ $(n \ge 1)$ such that the following conditions hold simultaneously:
 - (a) $\mathbf{u}_1 = \mathbf{x}$ or \mathbf{u}_1 rw-initially spans to \mathbf{x} ;
 - (b) $\mathbf{u}_n = \mathbf{y}$ or \mathbf{u}_n rw-terminally spans to \mathbf{y} ;

(c) For all *i* such that $1 \le i < n$, there is an rwtg-path between \mathbf{u}_i and \mathbf{u}_{i+1} with associated word in $B \cup C$. *Hint:* Use induction on *n*.

Extra Credit

1. (40 points) Devise an algorithm that determines whether or not a system is safe by enumerating all possible states. Is this problem *NP*-complete? Justify your answer. (*text*, problem 3.2)