Lecture 3 Outline

Reading: text, §3.2

1. Mono-operational case: there is an algorithm that decides whether a given mono-operational system and initial state is safe for a given generic right.

2. Take-Grant
 a. Counterpoint to HRU result
 b. Symmetry of take and grant rights
 c. Islands (maximal subject-only tg-connected subgraphs)
 d. Bridges (as a combination of terminal and initial spans)

3. Sharing
 a. Definition: $can\cdot share(r, x, y, G_0)$ true iff there exists a sequence of protection graphs G_0, \ldots, G_n such that $G_0 \vdash^* G_n$ using only take, grant, create, remove rules and in G_n, there is an edge from x to y labeled r
 b. Theorem: $can\cdot share(r, x, y, G_0)$ iff there is an edge from x to y labeled r in G_0, or all of the following hold:
 i. there is a vertex y' with an edge from y' to y labeled r;
 ii. there is a subject y'' which terminally spans to y', or $y'' = y'$;
 iii. there is a subject x' which initially spans to x, or $x' = x$; and
 iv. there is a sequence of islands I_1, \ldots, I_n connected by bridges for which $x' \in I_1$ and $y' \in I_n$.

4. Model Interpretation
 a. ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 b. Theorem: G_0 protection graph with exactly one subject, no edges; R set of rights. Then $G_0 \vdash^* G_n$ iff G_0 is a finite directed graph containing subjects and objects only, with edges labeled from nonempty subsets of R, and with at least one subject with no incoming edges
 c. Example: shared buffer managed by trusted third part

5. Stealing
 a. Definition: $can\cdot steal(r, x, y, G_0)$ true iff there is no edge from x to y labeled r in G_0, and there exists a sequence of protection graphs G_0, \ldots, G_n such that $G_0 \vdash^* G_n$ in which:
 b. G_n has an edge from x to y labeled r
 c. There is a sequence of rule applications ρ_1, \ldots, ρ_n such that $G_i \vdash G_{i-1}$; and
 d. For all vertices $v, w \in G_i$, if there is an edge from v to y in G_0 labeled r, then ρ_i is not of the form “v grants (r to y) to w”
 e. Example