Lecture 9 Outline

Reading: text, §4

1. Secure, precise
 a. Observability postulate
 b. Theorem: for any program \(p \) and policy \(c \), there is a secure, precise mechanism \(m^* \) such that, for all security mechanisms \(m \) associated with \(p \) and \(c \), \(m^* \approx m \)
 c. Theorem: There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program

2. Bell-LaPadula Model: intuitive, security classifications only
 a. Show level, categories, define clearance and classification
 b. Lattice: poset with relation reflexive, antisymmetric, transitive; greatest lower bound, least upper bound
 c. Apply lattice
 i. Set of classes \(SC \) is a partially ordered set under relation \(dom \) with \(glb \) (greatest lower bound), \(lub \) (least upper bound) operators
 ii. Note: \(dom \) is reflexive, transitive, antisymmetric
 iii. Example: \((A,C) \ dom (A',C') \) iff \(A \leq A' \) and \(C \subseteq C' \); \(lub((A,C),(A',C')) = (max(A,A'),C \cup C'), \)
 \(glb((A,C),(A',C')) = (min(A,A'),C \cap C') \)
 d. Simple security condition (no reads up), *-property (no writes down), discretionary security property
 e. Basic Security Theorem: if it is secure and transformations follow these rules, it will remain secure
 f. Maximum, current security level