Lecture #2

• Access control matrix
• Primitive operations and commands
• Miscellaneous points
• What is safety (security)?
• Is it decidable?
State Transitions

• Change the protection state of system
• \(\vdash \) represents transition
 – \(X_i \vdash \tau X_{i+1} \): command \(\tau \) moves system from state \(X_i \) to \(X_{i+1} \)
 – \(X_i \vdash * X_{i+1} \): a sequence of commands moves system from state \(X_i \) to \(X_{i+1} \)
• Commands often called *transformation procedures*
Primitive Operations

- **create subject** s; **create object** o
 - Creates new row, column in ACM; creates new column in ACM
- **destroy subject** s; **destroy object** o
 - Deletes row, column from ACM; deletes column from ACM
- **enter** r **into** $A[s, o]$
 - Adds r rights for subject s over object o
- **delete** r **from** $A[s, o]$
 - Removes r rights from subject s over object o
Create Subject

- Precondition: \(s \notin S \)
- Primitive command: \texttt{create subject} \(s \)
- Postconditions:
 - \(S' = S \cup \{ s \} \), \(O' = O \cup \{ s \} \)
 - \((\forall y \in O')[a'[s, y] = \emptyset] \), \((\forall x \in S')[a'[x, s] = \emptyset] \)
 - \((\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]] \)
Create Object

- Precondition: $o \notin O$
- Primitive command: **create object** o
- Postconditions:
 - $S' = S$, $O' = O \cup \{ o \}$
 - $(\forall x \in S')[a'[x, o] = \emptyset]$
 - $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$
Add Right

- Precondition: \(s \in S, \ o \in O \)
- Primitive command: enter \(r \) into \(a[s, o] \)
- Postconditions:
 - \(S' = S, \ O' = O \)
 - \(a'[s, o] = a[s, o] \cup \{ r \} \)
 - \((\forall x \in S')(\forall y \in O' \ - \ \{ \ o \ }) \ [a'[x, y] = a[x, y]] \)
 - \((\forall x \in S' \ - \ \{ \ s \ })(\forall y \in O') \ [a'[x, y] = a[x, y]] \)
Delete Right

- Precondition: \(s \in S, o \in O \)
- Primitive command: delete \(r \) from \(a[s, o] \)
- Postconditions:
 - \(S' = S, O' = O \)
 - \(a'[s, o] = a[s, o] - \{ r \} \)
 - \((\forall x \in S')(\forall y \in O' - \{ o \}) [a'[x, y] = a[x, y]] \)
 - \((\forall x \in S' - \{ s \})(\forall y \in O') [a'[x, y] = a[x, y]] \)
Destroy Subject

• Precondition: $s \in S$

• Primitive command: `destroy subject s`

• Postconditions:

 $S' = S - \{s\}$, $O' = O - \{s\}$

 $(\forall y \in O')[a'[s, y] = \emptyset]$, $(\forall x \in S')[a'[x, s] = \emptyset]$

 $(\forall x \in S')(\forall y \in O')[a'[x, y] = a[x, y]]$
Destroy Object

- Precondition: $o \in O$
- Primitive command: destroy object o
- Postconditions:
 - $S' = S, O' = O - \{ o \}$
 - $(\forall x \in S')[a'[x, o] = \emptyset]$
 - $(\forall x \in S')(\forall y \in O') [a'[x, y] = a[x, y]]$
Creating File

- Process p creates file f with r and w permission

```plaintext
command create\_file(p, f)
    create object f;
    enter own into A[p, f];
    enter r into A[p, f];
    enter w into A[p, f];
end
```
Mono-Operational Commands

- Make process p the owner of file g

 \[
 \text{command make\textcdot owner}(p, g) \\
 \quad \text{enter own into } A[p, g]; \\
 \text{end}
 \]

- Mono-operational command
 - Single primitive operation in this command
Conditional Commands

- Let p give q r rights over f, if p owns f

```plaintext
command grant\(\cdot\)read\(\cdot\)file\(\cdot\)1(p, f, q) 
if own in A[p, f] 
then 
    enter $r$ into A[q, f]; 
end
```

- Mono-conditional command
 - Single condition in this command
Multiple Conditions

- Let p give q r and w rights over f, if p has r and c rights over q

\[
\text{command } \text{grant}\cdot\text{read}\cdot\text{if}\cdot r\cdot\text{and}\cdot c(p, f, q)
\]
\[
\text{if } r \text{ in } A[p, q] \text{ and } c \text{ in } A[p, q]
\]
\[
\text{then}
\]
\[
\text{enter } r \text{ into } A[q, f];
\]
\[
\text{enter } w \text{ into } A[q, f];
\]
\[
\text{end}
\]
“Or” Conditions

• Let \(p \) give \(q \) \(r \) and \(w \) rights over \(f \), if \(p \) has \(r \) or \(c \) rights over \(q \)

\[
\text{command } \text{grant} \cdot \text{read} \cdot \text{if} \cdot r(p, f, q) \\
\text{if } r \text{ in } A[p, f] \\
\text{then} \\
\quad \text{enter } r \text{ into } A[q, f]; \\
\quad \text{enter } w \text{ into } A[q, f]; \\
\text{end}
\]
“Or” Conditions

command grant•read•if•c(p, f, q)
 if c in A[p, f]
 then
 enter r into A[q, f];
 enter w into A[q, f];
 end
command grant•read•if•r•or•c(p, f, q)
 grant•read•if•r(p, f, q);
 grant•read•if•c(p, f, q)
end
Copy Right

- Allows possessor to give rights to another
- Often attached to a right, so only applies to that right
 - \(r \) is read right that cannot be copied
 - \(rc \) is read right that can be copied
- Is copy flag copied when giving \(r \) rights?
 - Depends on model, instantiation of model
Own Right

• Usually allows possessor to change entries in ACM column
 – So owner of object can add, delete rights for others
 – May depend on what system allows
 • Can’t give rights to specific (set of) users
 • Can’t pass copy flag to specific (set of) users
Attenuation of Privilege

- Principle says you can’t give rights you do not possess
 - Restricts addition of rights within a system
 - Usually *ignored* for owner
- Why? Owner gives herself rights, gives them to others, deletes her rights.
What About Decidability?

- Give generic definition of “security”
- State decidability question in those terms
- Simple case: mono-operational commands
- General case: commands in general
What Is “Secure”?

- Adding a generic right r where there was not one is “leaking”
- If a system S, beginning in initial state s_0, cannot leak right r, it is safe with respect to the right r.
Safety Question

• Does there exist an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
 – Here, “safe” = “secure” for an abstract model
Mono-Operational Commands

• Answer: yes

• Sketch of proof:

 Consider minimal sequence of commands c_1, \ldots, c_k to leak the right.
 – Can omit delete, destroy
 – Can merge all creates into one

 Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights, upper bound is $k \leq n(s+1)(o+1)$
General Case

• **Answer:** no

• **Sketch of proof:**

 Reduce halting problem to safety problem

 Turing Machine review:
 – Infinite tape in one direction
 – States K, symbols M; distinguished blank b
 – Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
 – Halting state is q_f; TM halts when it enters this state
Mapping

Current state is k

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td>C</td>
<td>k</td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
Mapping

After $\delta(k, C) = (k_1, X, R)$
where k is the current state and k_1 the next state

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td>X</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td>D</td>
<td>k_1</td>
<td>end</td>
</tr>
</tbody>
</table>
Command Mapping

\[\delta(k, C) = (k_1, X, R) \] at intermediate becomes

```
command \( c_{k,C}(s_3, s_4) \)
if own in \( A[s_3,s_4] \) and \( k \) in \( A[s_3,s_3] \)
    and \( C \) in \( A[s_3,s_3] \)
then
    delete \( k \) from \( A[s_3,s_3] \);
    delete \( C \) from \( A[s_3,s_3] \);
    enter \( X \) into \( A[s_3,s_3] \);
    enter \( k_1 \) into \( A[s_4,s_4] \);
end
```
Mapping

After $\delta(k_1, D) = (k_2, Y, R)$ where k_1 is the current state and k_2 the next state
Command Mapping

\[\delta(k_1, D) = (k_2, Y, R) \] at end becomes

```
command crightmost_{k,c}(s_4,s_5)
if end in A[s_4,s_4] and k_1 in A[s_4,s_4]
    and D in A[s_4,s_4]
then
    delete end from A[s_4,s_4];
    create subject s_5;
    enter own into A[s_4,s_5];
    enter end into A[s_5,s_5];
    delete k_1 from A[s_4,s_4];
    delete D from A[s_4,s_4];
    enter Y into A[s_4,s_4];
    enter k_2 into A[s_5,s_5];
end
```
Rest of Proof

• Protection system exactly simulates a TM
 – Exactly 1 end right in ACM
 – 1 right in entries corresponds to state
 – Thus, at most 1 applicable command
• If TM enters state q_f, then right has leaked
• If safety question decidable, then represent TM as above and determine if q_f leaks
 – Implies halting problem decidable
• Conclusion: safety question undecidable
Other Results

- Set of unsafe systems is recursively enumerable
- Delete `create` primitive; then safety question is complete in P-SPACE
- Delete `destroy`, `delete` primitives; then safety question is undecidable
 - Systems are monotonic
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with `create`, `enter`, `delete` (and no `destroy`) is decidable.
Take-Grant Protection Model

• A specific (not generic) system
 – Set of rules for state transitions
• Safety decidable, and in time linear with the size of the system
• Goal: find conditions under which rights can be transferred from one entity to another in the system
System

- objects (files, ...)
- subjects (users, processes, ...)
- don't care (either a subject or an object)

\[G \vdash x \Rightarrow G' \] apply a rewriting rule \(x \) (witness) to \(G \) to get \(G' \)

\[G \vdash^* G' \] apply a sequence of rewriting rules (witness) to \(G \) to get \(G' \)

\[R = \{ t, g, r, w, \ldots \} \] set of rights
Rules

take

grant
More Rules

create \[\alpha \]

remove \[\alpha \alpha \beta \]

These four rules are called the *de jure* rules
Symmetry

1. x creates (tg to new) v
2. z takes (g to v) from x
3. z grants (α to y) to v
4. x takes (α to y) from v

Similar result for grant
Islands

- tg-path: path of distinct vertices connected by edges labeled t or g
 - Call them “tg-connected”

- island: maximal tg-connected subject-only subgraph
 - Any right one vertex has can be shared with any other vertex
Initial, Terminal Spans

- **initial span** from x to y
 - x subject
 - tg-path between x, y with word in \{ t^*g \} \cup \{ \nu \}
 - Means x can give rights it has to y

- **terminal span** from x to y
 - x subject
 - tg-path between x, y with word in \{ t^* \} \cup \{ \nu \}
 - Means x can acquire any rights y has
Bridges

- bridge: tg-path between subjects x, y, with associated word in

$$\{ \overrightarrow{t*}, \overrightarrow{t*}, \overleftarrow{tg} \overrightarrow{t*}, \overrightarrow{t*} \overleftarrow{tg} \overrightarrow{t*} \}$$

 - rights can be transferred between the two endpoints
 - *not* an island as intermediate vertices are objects
Example

- islands \{ p, u \} \{ w \} \{ y, s' \}
- bridges \{ u, v, w; \ w, x, y \}
- initial span \p (associated word ν)
- terminal span \s's (associated word \t\)
can•share Predicate

Definition:

- \textit{can•share}(r, x, y, G_0) if, and only if, there is a sequence of protection graphs \(G_0, \ldots, G_n \) such that \(G_0 \vdash^\ast G_n \) using only \textit{de jure} rules and in \(G_n \) there is an edge from \(x \) to \(y \) labeled \(r \).
can•share Theorem

- **can•share** \((r, x, y, G_0)\) if, and only if, there is an edge from \(x\) to \(y\) labeled \(r\) in \(G_0\), or the following hold simultaneously:
 - There is an \(s\) in \(G_0\) with an \(s\)-to-\(y\) edge labeled \(r\)
 - There is a subject \(x' = x\) or initially spans to \(x\)
 - There is a subject \(s' = s\) or terminally spans to \(s\)
 - There are islands \(I_1, \ldots, I_k\) connected by bridges, and \(x'\) in \(I_1\) and \(s'\) in \(I_k\)
Outline of Proof

• s has r rights over y
• s' acquires r rights over y from s
 – Definition of terminal span
• x' acquires r rights over y from s'
 – Repeated application of sharing among vertices in islands, passing rights along bridges
• x' gives r rights over y to x
 – Definition of initial span