Lecture #3

- Proof of mono-operational decidability result
- Review of Take-Grant rules, structures
- Sharing rights in Take-Grant
- Generated systems
- Theft
Safety Question

• Does there exist an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
 – Here, “safe” = “secure” for an abstract model
Mono-Operational Commands

• An algorithm exists that will determine whether a given mono-operational protection system with initial state s_0 is safe with respect to a generic right r.
Proof (1)

• Consider minimal sequence of commands (of length m) needed to leak r from system with initial state s_0
 – Identify each command by the type of primitive operation it invokes

• Cannot test for absence of rights, so delete, destroy not relevant
 – Ignore them
Proof (2)

• Reorder sequence of commands so all \texttt{creates} come first
 – Can be done because \texttt{entr}s require subject, object to have been created

• Commands after these check only for \texttt{existence} of right
Proof (3)

• It can be shown (see homework!)
 – Suppose s_1, s_2 created and commands test rights in $A[s_1, o_1], A[s_2, o_2]$
 – Doing the same tests on $A[s_1, o_1]$ and $A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2]$ gives same results
 – Thus all creates unnecessary
 • Unless s_0 is empty; then you need one create
Proof (4)

• $|S_0|$ number of subjects in s_0
• $|O_0|$ number of objects in s_0
• n number of (generic) rights
• In worst case, 1 create, so a total of $(|S_0| + 1)(|O_0| + 1)$ elements
• Thus $m \leq n(|S_0| + 1)(|O_0| + 1) + 1$
Take-Grant Protection Model

- A specific (not generic) system
 - Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system
System

- objects (files, …)
- subjects (users, processes, …)
- don't care (either a subject or an object)

\[G \vdash x G' \] apply a rewriting rule \(x \) (witness) to \(G \) to get \(G' \)

\[G \vdash^* G' \] apply a sequence of rewriting rules (witness) to \(G \) to get \(G' \)

\(R = \{ t, g, r, w, \ldots \} \) set of rights
Rules

Take

\[t \alpha \]

Grant

\[g \alpha \]
More Rules

create

\[\begin{array}{c}
\text{create} \\
\bullet \\
\end{array} \quad \begin{array}{c}
\text{\mid} \\
\end{array} \quad \begin{array}{c}
\text{remove} \\
\bullet \quad \alpha \quad \otimes \\
\end{array} \]

remove

\[\begin{array}{c}
\text{remove} \\
\bullet \quad \alpha \quad \otimes \\
\end{array} \quad \begin{array}{c}
\text{\mid} \\
\end{array} \quad \begin{array}{c}
\text{create} \\
\bullet \quad \alpha \quad \alpha \beta \quad \otimes \\
\end{array} \]

These four rules are called the *de jure* rules
Symmetry

1. x creates (tg to new) v
2. z takes (g to v) from x
 Similar result for grant
3. z grants (α to y) to v
4. x takes (α to y) from v
Islands

- *tg-path*: path of distinct vertices connected by edges labeled *t* or *g*
 - Call them “*tg-connected”
- *island*: maximal *tg*-connected subject-only subgraph
 - Any right one vertex has can be shared with any other vertex
Initial, Terminal Spans

• *initial span* from x to y
 – x subject
 – tg-path between x, y with word in $\{ \vec{tg} \} \cup \{ \nu \}$
 – Means x can give rights it has to y

• *terminal span* from x to y
 – x subject
 – tg-path between x, y with word in $\{ \vec{t^*} \} \cup \{ \nu \}$
 – Means x can acquire any rights y has
Bridges

- bridge: tg-path between subjects x, y, with associated word in

$$\{ \overrightarrow{t*}, \overrightarrow{t*}, \overrightarrow{t*g} \overrightarrow{t*}, \overrightarrow{t*g} \overleftarrow{t*} \}$$

 - rights can be transferred between the two endpoints
 - *not* an island as intermediate vertices are objects
Example

- islands \(\{ p, u \} \ { w \} \ { y, s' \} \)
- bridges \(u, v, w; w, x, y \)
- initial span \(p \) (associated word \(v \))
- terminal span \(s's \) (associated word \(t \))
can\textbullet share Predicate

Definition:

\textbullet \ can\textbullet share(r, x, y, G_0) if, and only if, there is a sequence of protection graphs G_0, \ldots, G_n such that G_0 \models^* G_n using only \textit{de jure} rules and in G_n there is an edge from x to y labeled r.
can\textbullet share Theorem

- can\textbullet share(\(r, x, y, G_0\)) if, and only if, there is an edge from \(x\) to \(y\) labeled \(r\) in \(G_0\), or the following hold simultaneously:
 - There is an \(s\) in \(G_0\) with an \(s\)-to-\(y\) edge labeled \(r\)
 - There is a subject \(x' = x\) or initially spans to \(x\)
 - There is a subject \(s' = s\) or terminally spans to \(s\)
 - There are islands \(I_1, \ldots, I_k\) connected by bridges, and \(x'\) in \(I_1\) and \(s'\) in \(I_k\)
Intuition

• s has r rights over y
• s' acquires r rights over y from s
 – Definition of terminal span
• x' acquires r rights over y from s'
 – Repeated application of sharing among vertices in islands, passing rights along bridges
• x' gives r rights over y to x
 – Definition of initial span
Example Interpretation

• ACM is generic
 – Can be applied in any situation

• Take-Grant has specific rules, rights
 – Can be applied in situations matching rules, rights

• Question: what states can evolve from a system that is modeled using the Take-Grant Model?
Take-Grant Generated Systems

- Theorem: G_0 protection graph with 1 vertex, no edges; R set of rights. Then $G_0 \vdash -* G$ iff:
 - G finite directed graph consisting of subjects, objects, edges
 - Edges labeled from nonempty subsets of R
 - At least one vertex in G has no incoming edges
Proof (1)

⇒: By construction; G final graph in theorem
 - Let x_1, \ldots, x_n be subjects in G
 - Let x_1 have no incoming edges

• Now construct G' as follows:
 1. Do “x_1 creates ($\alpha \cup \{ g \}$ to) new subject x_i”
 2. For all (x_i, x_j) where x_i has a rights over x_j, do “x_1 grants (α to x_j) to x_i”
 3. Let β be rights x_i has over x_j in G. Do “x_1 removes (($\alpha \cup \{ g \} - \beta$ to) x_j”

• Now G' is desired G
Proof (2)

\(\iff\): Let \(v\) be initial subject, and \(G_0 \vdash^* G\)

- Inspection of rules gives:
 - \(G\) is finite
 - \(G\) is a directed graph
 - Subjects and objects only
 - All edges labeled with nonempty subsets of \(R\)

- Limits of rules:
 - None allow vertices to be deleted so \(v\) in \(G\)
 - None add incoming edges to vertices without incoming edges, so \(v\) has no incoming edges
Example: Shared Buffer

- Goal: \(p, q \) to communicate through shared buffer \(b \) controlled by trusted entity \(s \)
 1. \(s \) creates (\(\{r, w\} \) to new object) \(b \)
 2. \(s \) grants (\(\{r, w\} \) to \(b \)) to \(p \)
 3. \(s \) grants (\(\{r, w\} \) to \(b \)) to \(q \)
can\textbullet steal Predicate

Definition:

- $\text{can\textbullet steal}(r, x, y, G_0)$ if, and only if, there is no edge from x to y labeled r in G_0, and the following hold simultaneously:
 - There is edge from x to y labeled r in G_n
 - There is a sequence of rule applications ρ_1, \ldots, ρ_n such that $G_{i-1} \vdash G_i$ using ρ_i
 - For all vertices v, w in G_{i-1}, if there is an edge from v to y in G_0 labeled r, then ρ_i is \textit{not} of the form “v grants (r to y) to w”
Example

- $\text{can\cdotsteal}(\alpha, s, w, G_0)$:
 1. u grants (t to v) to s
 2. s takes (t to u) from v
 3. s takes (α to w) from u

\[s \quad g \quad t \quad u \quad \alpha \quad t \quad v \quad w \]
can\textbullet\textit{steal} Theorem

• \textit{can}\textbullet\textit{steal}(\alpha, x, y, G_0) if, and only if, the following hold simultaneously:
 a) There is no edge from x to y labeled α in G_0
 b) There exists a subject x' such that $x' = x$ or x' initially spans to x
 c) There exists a vertex s with an edge labeled α to y in G_0
 d) \textit{can}\textbullet\textit{share}(t, x', s, G_0) holds
Proof (1)

⇒: Assume conditions hold

• x subject
 – x gets t rights to s, then takes α to y from s

• x object
 – can\cdot share(t, x', s, G_0) holds
 – If x' has no α edge to y in G_0, x' takes (α to y) from s and grants it to x
 – If x' has a edge to y in G_0, x' creates surrogate x'', gives it (t to s) and (g to x''); then x'' takes (α to y) and grants it to x
Proof (2)

\[\iff \] Assume \(\text{can\steal}(\alpha, x, y, G_0) \) holds

- First two conditions immediate from definition of \(\text{can\steal}, \text{can\share} \)
- Third condition immediate from theorem of conditions for \(\text{can\share} \)
- Fourth condition: \(\rho \) minimal length sequence of rule applications deriving \(G_n \) from \(G_0 \); \(i \) smallest index such that \(G_{i-1} \vdash G_i \) by rule \(\rho_i \) and adding \(\alpha \) from some \(p \) to \(y \) in \(G_i \)
 - What is \(\rho_i \)?
Proof (3)

- Not remove or create rule
 - \(y \) exists already
- Not grant rule
 - \(G_i \) first graph in which edge labeled \(\alpha \) to \(y \) is added, so by definition of \textit{can\textbullet share}, cannot be grant
- take rule: so \textit{can\textbullet share}(t, p, s, G_0) holds
 - So by earlier theorem, there is subject \(s' \) such that \(s' = s \) or terminally spans to \(s \)
 - Also, sequence of islands with \(x' \in I_1 \) and \(s' \in I_n \)
- If \(s \) object, \(s' \neq s \). If \(s' \), \(p \) in same island, \(p = s' \). If not, sequence not minimal; so \textit{can\textbullet share}(t, x, s, G_0) holds
 - Can choose \(s' \) in same island as \(p \)
Proof (4)

- If s subject, $p \in I_n$. If $p \notin G_0$, there is subject q for which $can\cdot share(t, q, s, G_0)$ holds
 - $s \in G_0$ and none of the rules add new labels to incoming edges on existing vertices

As s owns a rights to y in G_0, two cases. If $s \neq q$, replace

s grants (α to y) to q

with

p takes (α to y) from s
p takes (g to q) from s
p grants (α to y) to q

If $s = q$, you only need the first.