Lecture #6

- Schematic Protection Model
 - Safety question
- Expressive Power
 - HRU and SPM
- Multiparent create
 - ESPM
Key Question

• Characterize class of models for which safety is decidable
 – Existence: Take-Grant Protection Model is a member of such a class
 – Universality: In general, question undecidable, so for some models it is not decidable

• What is the dividing line?
Schematic Protection Model

• Type-based model
 – Protection type: entity label determining how control rights affect the entity
 • Set at creation and cannot be changed
 – Ticket: description of a single right over an entity
 • Entity has sets of tickets (called a domain)
 • Ticket is X/r, where X is entity and r right
 – Functions determine rights transfer
 • Link: are source, target “connected”?
 • Filter: is transfer of ticket authorized?
Link Predicate

• Idea: $\text{link}_i(X, Y)$ if X can assert some control right over Y

• Conjunction of disjunction of:
 – $X/z \in \text{dom}(X)$
 – $X/z \in \text{dom}(Y)$
 – $Y/z \in \text{dom}(X)$
 – $Y/z \in \text{dom}(Y)$
 – true
Examples

• Take-Grant:
 \[\text{link}(X, Y) = Y/g \in \text{dom}(X) \lor X/t \in \text{dom}(Y) \]

• Broadcast:
 \[\text{link}(X, Y) = X/b \in \text{dom}(X) \]

• Pull:
 \[\text{link}(X, Y) = Y/p \in \text{dom}(Y) \]
Filter Function

- Range is set of copyable tickets
 - Entity type, right
- Domain is subject pairs
- Copy a ticket $X/r:c$ from $dom(Y)$ to $dom(Z)$
 - $X/rc \in dom(Y)$
 - $link_i(Y, Z)$
 - $\tau(Y)/r:c \in f_i(\tau(Y), \tau(Z))$
- One filter function per link predicate
Example

• $f(\tau(Y), \tau(Z)) = T \times R$
 – Any ticket can be transferred (if other conditions met)

• $f(\tau(Y), \tau(Z)) = T \times RI$
 – Only tickets with inert rights can be transferred (if other conditions met)

• $f(\tau(Y), \tau(Z)) = \emptyset$
 – No tickets can be transferred
Example

- **Take-Grant Protection Model**
 - $TS = \{ \text{subjects} \}, \ TO = \{ \text{objects} \}$
 - $RC = \{ \text{tc}, \ gc \}, \ RI = \{ \text{rc}, \ wc \}$
 - $\text{link}(p, q) = p/t \in \text{dom}(q) \lor q/g \in \text{dom}(p)$
 - $f(\text{subject, subject}) = \{ \text{subject, object} \} \times \{ \text{tc, gc, rc, wc} \}$
Create Operation

- Must handle type, tickets of new entity
- Relation $cc(a, b)$ [cc for can-create]
 - Subject of type a can create entity of type b
- Rule of acyclic creates:

```
  a   b
  |   |
  v   v
  c   d
```

```
  a   b
  |   |
  v   v
  c   d
```
Types

- \(cr(a, b) \): tickets created when subject of type \(a \) creates entity of type \(b \) [\(cr \) for \textit{create-rule}]
- \(B \) object: \(cr(a, b) \subseteq \{ b/r:c \in RI \} \)
 - \(A \) gets \(B/r:c \) iff \(b/r:c \in cr(a, b) \)
- \(B \) subject: \(cr(a, b) \) has two subsets
 - \(cr_P(a, b) \) added to \(A \), \(cr_C(a, b) \) added to \(B \)
 - \(A \) gets \(B/r:c \) if \(b/r:c \in cr_P(a, b) \)
 - \(B \) gets \(A/r:c \) if \(a/r:c \in cr_C(a, b) \)
Non-Distinct Types

\(cr(a, a) \): who gets what?

- \(self/r:c \) are tickets for creator
- \(a/r:c \) tickets for created

\[
ctr(a, a) = \{ a/r:c, self/r:c \mid r:c \in R \}
\]
Attenuating Create Rule

\[\text{cr}(a, b) \text{ attenuating if:} \]

1. \(\text{cr}_C(a, b) \subseteq \text{cr}_P(a, b) \) and
2. \(a/r:c \in \text{cr}_P(a, b) \Rightarrow \text{self}/r:c \in \text{cr}_P(a, b) \)
Example: Owner-Based Policy

- Users can create files, creator can give itself any inert rights over file
 - \(cc = \{ (user, file) \} \)
 - \(cr(user, file) = \{ file/r:c \mid r \in RI \} \)
- Attenuating, as graph is acyclic, loop free

![Diagram](image-url)
Example: Take-Grant

- Say subjects create subjects (type \(s\)), objects (type \(o\)), but get only inert rights over latter
 - \(cc = \{(s, s), (s, o)\}\)
 - \(cr_c(a, b) = \emptyset\)
 - \(cr_p(s, s) = \{s/tc, s/gc, s/rc, s/wc\}\)
 - \(cr_p(s, o) = \{s/rc, s/wc\}\)

- Not attenuating, as no *self* tickets provided; *subject* creates *subject*
Safety Analysis

• Goal: identify types of policies with tractable safety analyses
• Approach: derive a state in which additional entries, rights do not affect the analysis; then analyze this state
 – Called a maximal state
Definitions

- System begins at initial state
- Authorized operation causes *legal transition*
- Sequence of legal transitions moves system into final state
 - This sequence is a *history*
 - Final state is *derivable* from history, initial state
More Definitions

• States represented by h
• Set of subjects SUB^h, entities ENT^h
• Link relation in context of state $h \ link^h$
• Dom relation in context of state $h \ dom^h$
\(\text{path}^h(X,Y) \)

- \(X, Y \) connected by one link or a sequence of links

- Formally, either of these hold:
 - for some \(i \), \(\text{link}^h_i(X,Y) \); or
 - there is a sequence of subjects \(X_0, \ldots, X_n \) such that \(\text{link}^h_i(X,X_0), \text{link}^h_i(X_n,Y) \), and for \(k = 1, \ldots, n \), \(\text{link}^h_i(X_{k-1},X_k) \)

- If multiple such paths, refer to \(\text{path}^h_j(X,Y) \)
Capacity $cap(path^h(X,Y))$

- Set of tickets that can flow over $path^h(X,Y)$
 - If $link_i^h(X,Y)$: set of tickets that can be copied over the link (i.e., $f_i(\tau(X), \tau(Y))$)
 - Otherwise, set of tickets that can be copied over *all* links in the sequence of links making up the $path^h(X,Y)$

- Note: all tickets (except those for the final link) *must* be copyable
Flow Function

- Idea: capture flow of tickets around a given state of the system
- Let there be m pathhs between subjects X and Y in state h. Then flow function

$$flow^h: SUB^h \times SUB^h \to 2^{T \times R}$$

is:

$$flow^h(X,Y) = \bigcup_{i=1, \ldots, m} cap(path^h_i(X,Y))$$
Properties of Maximal State

• Maximizes flow between all pairs of subjects
 – State is called *
 – Ticket in flow*(X,Y) means there exists a sequence of operations that can copy the ticket from X to Y

• Questions
 – Is maximal state unique?
 – Does every system have one?
Formal Definition

- Definition: $g \leq_0 h$ holds iff for all $X, Y \in SUB^0$, $flow^g(X,Y) \subseteq flow^h(X,Y)$.
 - Note: if $g \leq_0 h$ and $h \leq_0 g$, then g, h equivalent
 - Defines set of equivalence classes on set of derivable states

- Definition: for a given system, state m is maximal iff $h \leq_0 m$ for every derivable state h

- Intuition: flow function contains all tickets that can be transferred from one subject to another
 - All maximal states in same equivalence class
Maximal States

• Lemma. Given arbitrary finite set of states H, there exists a derivable state m such that for all $h \in H$, $h \leq_0 m$

• Outline of proof: induction
 – Basis: $H = \emptyset$; trivially true
 – Step: $|H'| = n + 1$, where $H' = G \cup \{h\}$. By IH, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$.
Outline of Proof

• M interleaving histories of g, h which:
 – Preserves relative order of transitions in g, h
 – Omits second create operation if duplicated

• M ends up at state m

• If $\text{path}^g(X,Y)$ for $X, Y \in \text{SUB}^g$, $\text{path}^m(X,Y)$
 – So $g \leq_0 m$

• If $\text{path}^h(X,Y)$ for $X, Y \in \text{SUB}^h$, $\text{path}^m(X,Y)$
 – So $h \leq_0 m$

• Hence m maximal state in H'
Answer to Second Question

• Theorem: every system has a maximal state *

• Outline of proof: K is set of derivable states containing exactly one state from each equivalence class of derivable states
 – Consider X, Y in SUB^0. Flow function’s range is $2^{|T \times R|}$, so can take at most $2^{|T \times R|}$ values. As there are $|SUB^0|^2$ pairs of subjects in SUB^0, at most $2^{|T \times R|} |SUB^0|^2$ distinct equivalence classes; so K is finite

• Result follows from lemma
Safety Question

• In this model:
 Is there a derivable state with $X/r:c \in \text{dom}(A)$, or does there exist a subject B with ticket X/rc in the initial state in $\text{flow}^*(B,A)$?

• To answer: construct maximal state and test
 – Consider acyclic attenuating schemes; how do we construct maximal state?
Intuition

• Consider state h.
• State u corresponds to h but with minimal number of new entities created such that maximal state m can be derived with no create operations
 – So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both
• m can be derived from u in polynomial time, so if u can be created by adding a finite number of subjects to h, safety question decidable.
Fully Unfolded State

• State u derived from state 0 as follows:
 – delete all loops in cc; new relation cc'
 – mark all subjects as folded
 – while any $X \in SUB^0$ is folded
 • mark it unfolded
 • if X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity $Y \in SUB^g$, mark it folded
 – if any subject in state h can create an entity of its own type, do so

• Now in state u
Termination

• First loop terminates as SUB^0 finite
• Second loop terminates:
 – Each subject in SUB^0 can create at most $|TS|$ children, and $|TS|$ is finite
 – Each folded subject in $|SUB^i|$ can create at most $|TS|$ – i children
 – When $i = |TS|$, subject cannot create more children; thus, folded is finite
 – Each loop removes one element
• Third loop terminates as SUB^h is finite
Surrogate

- Intuition: surrogate collapses multiple subjects of same type into single subject that acts for all of them
- Definition: given initial state 0, for every derivable state h define surrogate function $\sigma: \text{ENT}^h \rightarrow \text{ENT}^h$ by:
 - if X in ENT^0, then $\sigma(X) = X$
 - if Y creates X and $\tau(Y) = \tau(X)$, then $\sigma(X) = \sigma(Y)$
 - if Y creates X and $\tau(Y) \neq \tau(X)$, then $\sigma(X) = \tau(Y)$- surrogate of $\sigma(Y)$
Implications

- $\tau(\sigma(X)) = \tau(X)$
- If $\tau(X) = \tau(Y)$, then $\sigma(X) = \sigma(Y)$
- If $\tau(X) \neq \tau(Y)$, then
 - $\sigma(X)$ creates $\sigma(Y)$ in the construction of u
 - $\sigma(X)$ creates entities X' of type $\tau(X) = \tau(\sigma(X))$
- From these, for a system with an acyclic attenuating scheme, if X creates Y, then tickets that would be introduced by pretending that $\sigma(X)$ creates $\sigma(Y)$ are in $\text{dom}^u(\sigma(X))$ and $\text{dom}^u(\sigma(Y))$
Deriving Maximal State

• Idea
 – Reorder operations so that all creates come first and replace history with equivalent one using surrogates
 – Show maximal state of new history is also that of original history
 – Show maximal state can be derived from initial state
Reordering

- H legal history deriving state h from state 0
- Order operations: first create, then demand, then copy operations
- Build new history G from H as follows:
 - Delete all creates
 - “X demands $Y/r:c$” becomes “$\sigma(X)$ demands $\sigma(Y)/r:c$”
 - “Y copies $X/r:c$ from Y” becomes “$\sigma(Y)$ copies $\sigma(X)/r:c$ from $\sigma(Y)$
Tickets in Parallel

• Theorem
 – All transitions in G legal; if $X/r:c \in \text{dom}^h(Y)$, then $\sigma(X)/r:c \in \text{dom}^h(\sigma(Y))$

• Outline of proof: induct on number of copy operations in H
Basis

- H has create, demand only; so G has demand only. s preserves type, so by construction every demand operation in G legal.

- 3 ways for $X/r:c$ to be in $dom^h(Y)$:
 - $X/r:c \in dom^0(Y)$ means $X, Y \in ENT^0$, so trivially $\sigma(X)/r:c \in dom^g(\sigma(Y))$ holds
 - A create added $X/r:c \in dom^h(Y)$: previous lemma says $\sigma(X)/r:c \in dom^g(\sigma(Y))$ holds
 - A demand added $X/r:c \in dom^h(Y)$: corresponding demand operation in G gives $\sigma(X)/r:c \in dom^g(\sigma(Y))$
Hypothesis

- Claim holds for all histories with k copy operations
- History H has $k+1$ copy operations
 - H' initial sequence of H composed of k copy operations
 - h' state derived from H'
Step

• G' sequence of modified operations corresponding to H'; g' derived state
 – G' legal history by hypothesis

• Final operation is “Z copied $X/r:c$ from Y”
 – So h, h' differ by at most $X/r:c \in \text{dom}^h(Z)$
 – Construction of G means final operation is
 $\sigma(X)/r:c \in \text{dom}^g(\sigma(Y))$

• Proves second part of claim
Step

- \(H' \) legal, so for \(H \) to be legal, we have:
 1. \(X/rc \in \text{dom}^{h'}(Y) \)
 2. \(\text{link}^{h'}_i(Y, Z) \)
 3. \(\tau(X/r:c) \in f_i(\tau(Y), \tau(Z)) \)

- By IH, 1, 2, as \(X/r:c \in \text{dom}^{h'}(Y) \),
 \(\sigma(X)/r:c \in \text{dom}^{g'}(\sigma(Y)) \) and \(\text{link}^{g'}_i(\sigma(Y), \sigma(Z)) \)

- As \(\sigma \) preserves type, IH and 3 imply
 \(\tau(\sigma(X)/r:c) \in f_i(\tau((\sigma(Y)), \tau(\sigma(Z))) \)

- IH says \(G' \) legal, so \(G \) is legal
Corollary

• If $link_i^h(X, Y)$, then $link_i^g(\sigma(X), \sigma(Y))$