Lecture #7

- Schematic Protection Model
 - Safety question
- Expressive Power
 - HRU and SPM
- Multiparent create
 - ESPM
Main Theorem

- System has acyclic attenuating scheme
- For every history \(H \) deriving state \(h \) from initial state, there is a history \(G \) without create operations that derives \(g \) from the fully unfolded state \(u \) such that
 \[
 (\forall X,Y \in SUB^h)[flow^h(X, Y) \subseteq flow^g(\sigma(X), \sigma(Y))]
 \]
- Meaning: any history derived from an initial state can be simulated by corresponding history applied to the fully unfolded state derived from the initial state
Proof

• Outline of proof: show that every $\text{path}^h(X,Y)$ has corresponding $\text{path}^g(\sigma(X), \sigma(Y))$ such that $\text{cap}(\text{path}^h(X,Y)) = \text{cap}(\text{path}^g(\sigma(X), \sigma(Y)))$
 – Then corresponding sets of tickets flow through systems derived from H and G
 – As initial states correspond, so do those systems

• Proof by induction on number of links
Basis and Hypothesis

• Length of $path^h(X, Y) = 1$. By definition of $path^h$, $link^h_i(X, Y)$, hence $link^g_i(\sigma(X), \sigma(Y))$. As σ preserves type, this means $\text{cap}(path^h(X, Y)) = \text{cap}(path^g(\sigma(X), \sigma(Y)))$

• Now assume this is true when $path^h(X, Y)$ has length k
Step

• Let $path^h(X, Y)$ have length $k+1$. Then there is a Z such that $path^h(X, Z)$ has length k and $link^h_j(Z, Y)$.
• By IH, there is a $path^g(\sigma(X), \sigma(Z))$ with same capacity as $path^h(X, Z)$
• By corollary, $link^g_j(\sigma(Z), \sigma(Y))$
• As σ preserves type, there is $path^g(\sigma(X), \sigma(Y))$ with

$$\text{cap}(path^h(X, Y)) = \text{cap}(path^g(\sigma(X), \sigma(Y)))$$
Implication

• Let maximal state corresponding to \(v \) be \(#u \)
 - Deriving history has no creates
 - By theorem,
 \[
 (\forall X, Y \in SUB^h)[flow^h(X, Y) \subseteq flow^{#u}(\sigma(X), \sigma(Y))]
 \]
 - If \(X \in SUB^0, \sigma(X) = X \), so:
 \[
 (\forall X, Y \in SUB^0)[flow^h(X, Y) \subseteq flow^{#u}(X, Y)]
 \]

• So \(#u \) is maximal state for system with acyclic attenuating scheme
 - \(#u \) derivable from \(u \) in time polynomial to \(|SUB^u| \)
 - Worst case computation for \(flow^{#u} \) is exponential in \(|TS| \)
Safety Result

• If the scheme is acyclic and attenuating, the safety question is decidable
Expressive Power

• How do the sets of systems that models can describe compare?
 – If HRU equivalent to SPM, SPM provides more specific answer to safety question
 – If HRU describes more systems, SPM applies only to the systems it can describe
HRU vs. SPM

- SPM more abstract
 - Analyses focus on limits of model, not details of representation
- HRU allows revocation
 - SMP has no equivalent to delete, destroy
- HRU allows multiparent creates
 - SMP cannot express multiparent creates easily, and not at all if the parents are of different types because can\textbullet create allows for only one type of creator
Multiparent Create

• Solves mutual suspicion problem
 – Create proxy jointly, each gives it needed rights

• In HRU:

```
command multicreate(s_0, s_1, o)
if r in a[s_0, s_1] and r in a[s_1, s_0]
then
  create object o;
  enter r into a[s_0, o];
  enter r into a[s_1, o];
end
```
SPM and Multiparent Create

- **cc extended in obvious way**
 - \(cc \subseteq TS \times \ldots \times TS \times T \)
- **Symbols**
 - \(X_1, \ldots, X_n \) parents, \(Y \) created
 - \(R_{1,i}, R_{2,i}, R_{3}, R_{4,i} \subseteq R \)
- **Rules**
 - \(cr_{P,i}(\tau(X_1), \ldots, \tau(X_n)) = Y/R_{1,1} \cup X_i/R_{2,i} \)
 - \(cr_{C}(\tau(X_1), \ldots, \tau(X_n)) = Y/R_{3} \cup X_1/R_{4,1} \cup \ldots \cup X_n/R_{4,n} \)
Example

- Anna, Bill must do something cooperatively
 - But they don’t trust each other
- Jointly create a proxy
 - Each gives proxy only necessary rights
- In ESPM:
 - Anna, Bill type a; proxy type p; right $x \in R$
 - $cc(a, a) = p$
 - $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 - $cr_{proxy}(a, a, p) = \{ \text{Anna}/x, \text{Bill}/x \}$
2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2-parent joint create
- Definition of 3-parent joint create (subjects P_1, P_2, P_3; child C):
 - $cc(\tau(P_1), \tau(P_2), \tau(P_3)) = Z \subseteq T$
 - $cr_{P_1}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{1,1} \cup P_1/R_{2,1}$
 - $cr_{P_2}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{2,1} \cup P_2/R_{2,2}$
 - $cr_{P_3}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{3,1} \cup P_3/R_{2,3}$
General Approach

• Define agents for parents and child
 – Agents act as surrogates for parents
 – If create fails, parents have no extra rights
 – If create succeeds, parents, child have exactly same rights as in 3-parent creates
 • Only extra rights are to agents (which are never used again, and so these rights are irrelevant)
Entities and Types

- Parents P_1, P_2, P_3 have types p_1, p_2, p_3
- Child C of type c
- Parent agents A_1, A_2, A_3 of types a_1, a_2, a_3
- Child agent S of type s
- Type t is parentage
 - if $X/t \in dom(Y)$, X is Y’s parent
- Types t, a_1, a_2, a_3, s are new types
Can•Create

• Following added to can•create:
 – \(\text{cc}(p_1) = a_1 \)
 – \(\text{cc}(p_2, a_1) = a_2 \)
 – \(\text{cc}(p_3, a_2) = a_3 \)
 • Parents creating their agents; note agents have maximum of 2 parents
 – \(\text{cc}(a_3) = s \)
 • Agent of all parents creates agent of child
 – \(\text{cc}(s) = c \)
 • Agent of child creates child
Creation Rules

• Following added to create rule:

 – \(cr_p(p_1, a_1) = \emptyset \)

 – \(cr_c(p_1, a_1) = p_1/Rtc \)

 • Agent’s parent set to creating parent; agent has all rights over parent

 – \(cr_{P_{\text{first}}}(p_2, a_1, a_2) = \emptyset \)

 – \(cr_{P_{\text{second}}}(p_2, a_1, a_2) = \emptyset \)

 – \(cr_c(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc \)

 • Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
Creation Rules

- \(cr_{P_{first}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_{P_{second}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_C(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc \)
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- \(cr_p(a_3, s) = \emptyset \)
- \(cr_C(a_3, s) = a_3/tc \)
 - Child’s agent has third agent as parent \(cr_p(a_3, s) = \emptyset \)
- \(cr_p(s, c) = C/Rtc \)
- \(cr_C(s, c) = c/R_3t \)
 - Child’s agent gets full rights over child; child gets \(R_3 \) rights over agent
Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights
 - \(\text{link}_1(A_1, A_2) = A_1/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2) \)
 - \(\text{link}_1(A_2, A_3) = A_2/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3) \)
 - \(\text{link}_2(S, A_3) = A_3/t \in \text{dom}(S) \land C/t \in \text{dom}(C) \)
 - \(\text{link}_3(A_1, C) = C/t \in \text{dom}(A_1) \)
 - \(\text{link}_3(A_2, C) = C/t \in \text{dom}(A_2) \)
 - \(\text{link}_3(A_3, C) = C/t \in \text{dom}(A_3) \)
 - \(\text{link}_4(A_1, P_1) = P_1/t \in \text{dom}(A_1) \land A_1/t \in \text{dom}(A_1) \)
 - \(\text{link}_4(A_2, P_2) = P_2/t \in \text{dom}(A_2) \land A_2/t \in \text{dom}(A_2) \)
 - \(\text{link}_4(A_3, P_3) = P_3/t \in \text{dom}(A_3) \land A_3/t \in \text{dom}(A_3) \)
Filter Functions

- $f_1(a_2, a_1) = a_1/t \cup c/Rtc$
- $f_1(a_3, a_2) = a_2/t \cup c/Rtc$
- $f_2(s, a_3) = a_3/t \cup c/Rtc$
- $f_3(a_1, c) = p_1/R_{4,1}$
- $f_3(a_2, c) = p_2/R_{4,2}$
- $f_3(a_3, c) = p_3/R_{4,3}$
- $f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1}$
- $f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2}$
- $f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3}$
Construction

Create A_1, A_2, A_3, S, C; then

- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- A_1 has P_1/Rtc
- A_2 has $P_2/Rtc \cup A_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has C/R_3
Construction

- Only $link_2(S, A_3)$ true \Rightarrow apply f_2
 - A_3 has $P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc$
- Now $link_1(A_3, A_2)$ true \Rightarrow apply f_1
 - A_2 has $P_2/Rtc \cup A_1/tc \cup A_2/t \cup C/Rtc$
- Now $link_1(A_2, A_1)$ true \Rightarrow apply f_1
 - A_1 has $P_2/Rtc \cup A_1/tc \cup A_1/t \cup C/Rtc$
- Now all $link_3$s true \Rightarrow apply f_3
 - C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$
Finish Construction

• Now $link_4$ is true \Rightarrow apply f_4
 - P_1 has $C/R_{1,1} \cup P_1/R_{2,1}$
 - P_2 has $C/R_{1,2} \cup P_2/R_{2,2}$
 - P_3 has $C/R_{1,3} \cup P_3/R_{2,3}$

• 3-parent joint create gives same rights to P_1, P_2, P_3, C

• If create of C fails, $link_2$ does not hold, so construction fails
Theorem

- The two-parent joint creation operation can implement an n-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.

- **Proof**: by construction, as above
 - Difference is that the two systems need not start at the same initial state
Theorems

• Monotonic ESPM and the monotonic HRU model are equivalent.

• Safety question in ESPM also decidable if acyclic attenuating scheme
 – Proof similar to that for SPM
Expressiveness

- Graph-based representation to compare models
- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices
Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes P_1, P_2, P_3 parents
 - Create node C with type c with edges of type e
 - Add node A_1 of type a and edge from P_1 to A_1 of type e''

```
P_1
  -
  ↓
A_1

P_2

P_3
```
Next Step

- A_1, P_2 create A_2; A_2, P_3 create A_3
- Type of nodes, edges are a and e'

![Diagram showing nodes and edges connecting A_1, P_2, A_2, P_3, and A_3.]
Next Step

- A_3 creates S, of type a
- S creates C, of type c
Last Step

- Edge adding operations:
 - $P_1 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_1 to C edge type e
 - $P_2 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_2 to C edge type e
 - $P_3 \rightarrow A_3 \rightarrow S \rightarrow C$: P_3 to C edge type e
Definitions

• *Scheme*: graph representation as above
• *Model*: set of schemes
• Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted
Example

• Above 2-parent joint creation simulation in scheme \textit{TWO}

• Equivalent to 3-parent joint creation scheme \textit{THREE} in which P_1, P_2, P_3, C are of same type as in \textit{TWO}, and edges from P_1, P_2, P_3 to C are of type e, and no types a and e' exist in \textit{TWO}
Simulation

Scheme A simulates scheme B iff

• every state B can reach has a corresponding state in A that A can reach; and

• every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach

 – The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of $THREE$
Expressive Power

• If there is a scheme in MA that no scheme in MB can simulate, MB less expressive than MA

• If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA

• If MA as expressive as MB and vice versa, MA and MB equivalent
Example

• Scheme A in model M
 – Nodes X_1, X_2, X_3
 – 2-parent joint create
 – 1 node type, 1 edge type
 – No edge adding operations
 – Initial state: X_1, X_2, X_3, no edges

• Scheme B in model N
 – All same as A except no 2-parent joint create
 – 1-parent create

• Which is more expressive?
Can A Simulate B?

- Scheme A simulates 1-parent create: have both parents be same node
 - Model M as expressive as model N
Can B Simulate A?

- Suppose X_1, X_2 jointly create Y in A
 - Edges from X_1, X_2 to Y, no edge from X_3 to Y
- Can B simulate this?
 - Without loss of generality, X_1 creates Y
 - Must have edge adding operation to add edge from X_2 to Y
 - One type of node, one type of edge, so operation can add edge between any 2 nodes
No

- All nodes in A have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from X_2 to C can add one from X_3 to C
 - A cannot enter this state
 - A cannot have node (C) with 3 incoming edges
 - B cannot transition to a state in which Y has even number of incoming edges
 - No remove rule

- So B cannot simulate A; N less expressive than M
Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models
- Proof by contradiction
 - Scheme A is multiparent model
 - Scheme B is single parent create
 - Claim: B can simulate A, without assumption that they start in the same initial state
 - Note: example assumed same initial state
Outline of Proof

- **X₁, X₂** nodes in **A**
 - They create **Y₁, Y₂, Y₃** using multiparent create rule
 - **Y₁, Y₂** create **Z**, again using multiparent create rule
 - *Note*: no edge from **Y₃** to **Z** can be added, as **A** has no edge-adding operation
Outline of Proof

- **W, X₁, X₂ nodes in B**
 - **W** creates **Y₁, Y₂, Y₃** using single parent create rule, and adds edges for **X₁, X₂** to all using edge adding rule
 - **Y₁** creates **Z**, again using single parent create rule; now must add edge from **X₂** to **Z** to simulate **A**
 - Use same edge adding rule to add edge from **Y₃** to **Z**: cannot duplicate this in scheme **A**!
Meaning

• Scheme B cannot simulate scheme A, contradicting hypothesis

• ESPM more expressive than SPM
 – ESPM multiparent and monotonic
 – SPM monotonic but single parent