Lecture #14

• Access control models
 – ORCON, RBAC
• Information flow
 – Noninterference
• Problem: organization creating document wants to control its dissemination
 – Example: Secretary of Agriculture writes a memo for distribution to her immediate subordinates, and she must give permission for it to be disseminated further. This is “originator controlled” (here, the “originator” is a person).
Requirements

- Subject $s \in S$ marks object $o \in O$ as ORCON on behalf of organization X. X allows o to be disclosed to subjects acting on behalf of organization Y with the following restrictions:
 1. o cannot be released to subjects acting on behalf of other organizations without X’s permission; and
 2. Any copies of o must have the same restrictions placed on it.
DAC Fails

- Owner can set any desired permissions
 - This makes 2 unenforceable
MAC Fails

• First problem: category explosion
 – Category C contains o, X, Y, and nothing else. If a subject $y \in Y$ wants to read o, $x \in X$ makes a copy o'. Note o' has category C. If y wants to give $z \in Z$ a copy, z must be in Y—by definition, it’s not. If x wants to let $w \in W$ see the document, need a new category C' containing o, X, W.

• Second problem: abstraction
 – MAC classification, categories centrally controlled, and access controlled by a centralized policy
 – ORCON controlled locally
Combine Them

- The owner of an object cannot change the access controls of the object.
- When an object is copied, the access control restrictions of that source are copied and bound to the target of the copy.
 - These are MAC (owner can’t control them)
- The creator (originator) can alter the access control restrictions on a per-subject and per-object basis.
 - This is DAC (owner can control it)
DRM

- Goal is to protect information on a disk
- “Owner” is actually “licensee”
 - You don’t own the content
 - Owner (copyright holder) can constrain what you can do with it
How Not to Do It

- User must install special program to play content
- Program also modified kernel to:
 - Prevent your CD copying software from working (by using a blacklist)
 - Monitors running applications always (even when no CD in drive)
 - Places hidden files on system
 - Allows you to make 3 copies using their software (and none with yours)
 - Weakens kernel so bad folks can exploit this (unintentional)
RBAC

• Access depends on function, not identity
 – Example:
 • Allison, bookkeeper for Math Dept, has access to financial records.
 • She leaves.
 • Betty hired as the new bookkeeper, so she now has access to those records
 – The role of “bookkeeper” dictates access, not the identity of the individual.
Definitions

• Role r: collection of job functions
 – $\text{trans}(r)$: set of authorized transactions for r

• Active role of subject s: role s is currently in
 – $\text{actr}(s)$

• Authorized roles of a subject s: set of roles s is authorized to assume
 – $\text{authr}(s)$

• $\text{canexec}(s, t)$ iff subject s can execute transaction t at current time
Axioms

• Let S be the set of subjects and T the set of transactions.

• Rule of role assignment:
 $$(\forall s \in S)(\forall t \in T) \ [\text{canexec}(s, t) \rightarrow \text{actr}(s) \neq \emptyset].$$
 – If s can execute a transaction, it has a role
 – This ties transactions to roles

• Rule of role authorization:
 $$(\forall s \in S) \ [\text{actr}(s) \subseteq \text{authr}(s)].$$
 – Subject must be authorized to assume an active role
 (otherwise, any subject could assume any role)
Axiom

• Rule of transaction authorization:
 \[(\forall s \in S)(\forall t \in T)\]
 \[[\text{canexec}(s, t) \rightarrow t \in \text{trans}(\text{actr}(s))] \].
 – If a subject \(s \) can execute a transaction, then the transaction is an authorized one for the role \(s \) has assumed.
Containment of Roles

• Trainer can do all transactions that trainee can do (and then some). This means role r contains role $r'(r > r')$. So:

$$(\forall s \in S)[r' \in \text{authr}(s) \land r > r' \rightarrow r \in \text{authr}(s)]$$
Separation of Duty

- Let r be a role, and let s be a subject such that $r \in auth(s)$. Then the predicate $meauth(r)$ (for mutually exclusive authorizations) is the set of roles that s cannot assume because of the separation of duty requirement.

- Separation of duty:

 $$(\forall r_1, r_2 \in R) \ [r_2 \in meauth(r_1) \rightarrow \ [(\forall s \in S) \ [r_1 \in authr(s) \rightarrow r_2 \notin authr(s)]]]$$
Overview

• Problem
 – Policy composition

• Noninterference
 – HIGH inputs affect LOW outputs

• Nondeducibility
 – HIGH inputs can be determined from LOW outputs

• Restrictiveness
 – When can policies be composed successfully
Composition of Policies

• Two organizations have two security policies

• They merge
 – How do they combine security policies to create one security policy?
 – Can they create a coherent, consistent security policy?
The Problem

- Single system with 2 users
 - Each has own virtual machine
 - Holly at system high, Lara at system low so they cannot communicate directly

- CPU shared between VMs based on load
 - Forms a covert channel through which Holly, Lara can communicate
Example Protocol

• Holly, Lara agree:
 – Begin at noon
 – Lara will sample CPU utilization every minute
 – To send 1 bit, Holly runs program
 • Raises CPU utilization to over 60%
 – To send 0 bit, Holly does not run program
 • CPU utilization will be under 40%

• Not “writing” in traditional sense
 – But information flows from Holly to Lara
Policy vs. Mechanism

• Can be hard to separate these
• In the abstract: CPU forms channel along which information can be transmitted
 – Violates *-property
 – Not “writing” in traditional sense
• Conclusions:
 – Model does not give sufficient conditions to prevent communication, or
 – System is improperly abstracted; need a better definition of “writing”
Composition of Bell-LaPadula

• Why?
 – Some standards require secure components to be connected to form secure (distributed, networked) system

• Question
 – Under what conditions is this secure?

• Assumptions
 – Implementation of systems precise with respect to each system’s security policy
Issues

- Compose the lattices
- What is relationship among labels?
 - If the same, trivial
 - If different, new lattice must reflect the relationships among the levels
Analysis

• Assume $S < \text{HIGH} < \text{TS}$
• Assume SOUTH, EAST, WEST different
• Resulting lattice has:
 – 4 clearances ($\text{LOW} < S < \text{HIGH} < \text{TS}$)
 – 3 categories (SOUTH, EAST, WEST)
Same Policies

• If we can change policies that components must meet, composition is trivial (as above)
• If we cannot, we must show composition meets the same policy as that of components; this can be very hard
Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:
 – Any access allowed by policy of a component
 must be allowed by composition of components
 (autonomy)
 – Any access forbidden by policy of a component
 must be forbidden by composition of components
 (security)
Implications

• Composite system satisfies security policy of components as components’ policies take precedence

• If something neither allowed nor forbidden by principles, then:
 – Allow it (Gong & Qian)
 – Disallow it (Fail-Safe Defaults)
Example

• System X: Bob can’t access Alice’s files
• System Y: Eve, Lilith can access each other’s files

• Composition policy:
 – Bob can access Eve’s files
 – Lilith can access Alice’s files

• Question: can Bob access Lilith’s files?
Solution (Gong & Qian)

• Notation:
 – \((a, b)\): \(a\) can read \(b\)’s files
 – \(AS(x)\): access set of system \(x\)

• Set-up:
 – \(AS(X) = \emptyset\)
 – \(AS(Y) = \{ (Eve, Lilith), (Lilith, Eve) \} \)
 – \(AS(X \cup Y) = \{ (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) \} \)
Solution (Gong & Qian)

- Compute transitive closure of $AS(X \cup Y)$:
 - $AS(X \cup Y)^+ = \{(Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice), (Lilith, Eve), (Lilith, Alice)\}$

- Delete accesses conflicting with policies of components:
 - Delete (Bob, Alice)

- (Bob, Lilith) in set, so Bob can access Lilith’s files
Idea

• Composition of policies allows accesses not mentioned by original policies
• Generate all possible allowed accesses
 – Computation of transitive closure
• Eliminate forbidden accesses
 – Removal of accesses disallowed by individual access policies
• Everything else is allowed
• Note; determining if access allowed is of polynomial complexity
Interference

• Think of it as something used in communication
 – Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects it—communication

• Plays role of writing (interfering) and reading (detecting the interference)
Model

- System as state machine
 - Subjects $S = \{s_i\}$
 - States $\Sigma = \{\sigma_i\}$
 - Outputs $O = \{o_i\}$
 - Commands $Z = \{z_i\}$
 - State transition commands $C = S \times Z$

- Note: no inputs
 - Encode either as selection of commands or in state transition commands
Functions

• State transition function $T: C \times \Sigma \rightarrow \Sigma$
 – Describes effect of executing command c in state σ

• Output function $P: C \times \Sigma \rightarrow O$
 – Output of machine when executing command c in state s

• Initial state is σ_0
Example

- Users Heidi (high), Lucy (low)
- 2 bits of state, H (high) and L (low)
 - System state is (H, L) where H, L are 0, 1
- 2 commands: $xor0, xor1$ do xor with 0, 1
 - Operations affect both state bits regardless of whether Heidi or Lucy issues it
Example: 2-bit Machine

- $S = \{ \text{Heidi, Lucy} \}$
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$
- $C = \{ \text{xor0, xor1} \}$

<table>
<thead>
<tr>
<th></th>
<th>Input States (H, L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>xor0</td>
<td>(0,0)</td>
</tr>
<tr>
<td>xor1</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Outputs and States

- T is inductive in first argument, as
 \[T(c_0, \sigma_0) = \sigma_1; \ T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i)) \]

- Let C^* be set of possible sequences of commands in C

- $T^*: C^* \times \Sigma \rightarrow \Sigma$ and
 \[c_s = c_0 \ldots c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n, \ldots, T(c_0, \sigma_i) \ldots) \]

- P similar; define P^* similarly
Projection

• $T^*(c_s, \sigma_i)$ sequence of state transitions
• $P^*(c_s, \sigma_i)$ corresponding outputs
• $proj(s, c_s, \sigma_i)$ set of outputs in $P^*(c_s, \sigma_i)$ that subject s authorized to see
 – In same order as they occur in $P^*(c_s, \sigma_i)$
 – Projection of outputs for s
• Intuition: list of outputs after removing outputs that s cannot see
Purge

- \(G \subseteq S \), \(G \) a group of subjects
- \(A \subseteq Z \), \(A \) a set of commands
- \(\pi_G(c_s) \) subsequence of \(c_s \) with all elements \((s, z), s \in G \) deleted
- \(\pi_A(c_s) \) subsequence of \(c_s \) with all elements \((s, z), z \in A \) deleted
- \(\pi_{G,A}(c_s) \) subsequence of \(c_s \) with all elements \((s, z), s \in G \) and \(z \in A \) deleted
Example: 2-bit Machine

- Let $\sigma_0 = (0,1)$
- 3 commands applied:
 - Heidi applies $xor0$
 - Lucy applies $xor1$
 - Heidi applies $xor1$
- $c_s = ((\text{Heidi}, xor0), (\text{Lucy}, xor1), (\text{Heidi}, xor0))$
- Output is 011001
 - Shorthand for sequence (0,1)(1,0)(0,1)
Example

• $proj(\text{Heidi}, c_s, \sigma_0) = 011001$
• $proj(\text{Lucy}, c_s, \sigma_0) = 101$
• $\pi_{\text{Lucy}}(c_s) = (\text{Heidi,xor0}), (\text{Heidi,xor1})$
• $\pi_{\text{Lucy,xor1}}(c_s) = (\text{Heidi,xor0}), (\text{Heidi,xor1})$
• $\pi_{\text{Heidi}}(c_s) = (\text{Lucy,xor1})$
Example

• $\pi_{\text{Lucy}, \text{xor0}}(c_s) = (\text{Heidi}, \text{xor0}), (\text{Lucy}, \text{xor1}), (\text{Heidi}, \text{xor1})$

• $\pi_{\text{Heidi}, \text{xor0}}(c_s) = \pi_{\text{xor0}}(c_s) = (\text{Lucy}, \text{xor1}), (\text{Heidi}, \text{xor1})$

• $\pi_{\text{Heidi}, \text{xor1}}(c_s) = (\text{Heidi}, \text{xor0}), (\text{Lucy}, \text{xor1})$

• $\pi_{\text{xor1}}(c_s) = (\text{Heidi}, \text{xor0})$
Noninterference

- Intuition: Set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference.
- Formally: $G, G' \subseteq S, G \neq G'; A \subseteq Z$; Users in G executing commands in A are noninterfering with users in G' iff for all $c_s \in C^*$, and for all $s \in G'$,

 $$\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, \pi_{G,A}(c_s), \sigma_i)$$

 - Written $A, G :| G'$
Example

• Let $c_s = ((\text{Heidi}, \text{xor}0), (\text{Lucy}, \text{xor}1), (\text{Heidi}, \text{xor}1))$
 and $\sigma_0 = (0, 1)$

• Take $G = \{ \text{Heidi} \}$, $G' = \{ \text{Lucy} \}$, $A = \emptyset$

• $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, \text{xor}1)$
 – So $\text{proj}(\text{Lucy}, \pi_{\text{Heidi}}(c_s), \sigma_0) = 0$

• $\text{proj}(\text{Lucy}, c_s, \sigma_0) = 101$

• So $\{ \text{Heidi} \} :| \{ \text{Lucy} \}$ is false
 – Makes sense; commands issued to change H bit also affect L bit
Example

• Same as before, but Heidi’s commands affect H bit only, Lucy’s the L bit only
• Output is $0_H0_L1_H$
• $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, \text{xor1})$
 – So $\text{proj}(\text{Lucy}, \pi_{\text{Heidi}}(c_s), \sigma_0) = 0$
• $\text{proj}(\text{Lucy}, c_s, \sigma_0) = 0$
• So $\{ \text{Heidi} \} :\not\{ \text{Lucy} \}$ is true
 – Makes sense; commands issued to change H bit now do not affect L bit