Lecture #16

- Composition
- Nondeducibility
- Generalized Noninterference
- Restrictiveness
Policy Composition I

• Assumed: Output function of input
 – Means deterministic (else not function)
 – Means uninterruptability (differences in timings can cause differences in states, hence in outputs)

• This result for deterministic, noninterference-secure systems
Compose Systems

- Louie, Dewey LOW
- Hughie HIGH
- b_L output buffer
 - Anyone can read it
- b_H input buffer
 - From HIGH source
- Hughie reads from:
 - b_{LH} (Louie writes)
 - b_{LDH} (Louie, Dewey write)
 - b_{DH} (Dewey writes)
Systems Secure

- All noninterference-secure
 - Hughie has no output
 - So inputs don’t interfere with it
 - Louie, Dewey have no input
 - So (nonexistent) inputs don’t interfere with outputs
Security of Composition

• Buffers finite, sends/receives blocking: composition not secure!
 – Example: assume b_{DH}, b_{LH} have capacity 1

• Algorithm:
 1. Louie (Dewey) sends message to $b_{LH} (b_{DH})$
 – Fills buffer
 2. Louie (Dewey) sends second message to $b_{LH} (b_{DH})$
 3. Louie (Dewey) sends a 0 (1) to b_{L}
 4. Louie (Dewey) sends message to b_{LDH}
 – Signals Hughie that Louie (Dewey) completed a cycle
Hughie

• Reads bit from b_H
 – If 0, receive message from b_{LH}
 – If 1, receive message from b_{DH}

• Receive on b_{LDH}
 – To wait for buffer to be filled
Example

• Hughie reads 0 from b_H
 – Reads message from b_{LH}
• Now Louie’s second message goes into b_{LH}
 – Louie completes step 2 and writes 0 into b_L
• Dewey blocked at step 1
 – Dewey cannot write to b_L
• Symmetric argument shows that Hughie reading 1 produces a 1 in b_L
• So, input from b_H copied to output b_L
Nondeducibility

- Noninterference: do state transitions caused by high level commands interfere with sequences of state transitions caused by low level commands?

- Really case about inputs and outputs:
 - Can low level subject deduce *anything* about high level outputs from a set of low level outputs?
Example: 2-Bit System

- High operations change only High bit
 - Similar for Low
- $\sigma_0 = (0, 0)$
- Commands (Heidi, xor1), (Lara, xor0), (Lara, xor1), (Lara, xor0), (Heidi, xor1), (Lara, xor0)
 - Both bits output after each command
- Output is: 00101011110101
Security

• Not noninterference-secure w.r.t. Lara
 – Lara sees output as 0001111
 – Delete *High* and she sees 00111

• But Lara still cannot deduce the commands deleted
 – Don’t affect values; only lengths

• So it is deducibly secure
 – Lara can’t deduce the commands Heidi gave
Event System

- 4-tuple (E, I, O, T)
 - E set of events
 - $I \subseteq E$ set of input events
 - $O \subseteq E$ set of output events
 - T set of all finite sequences of events legal within system

- E partitioned into H, L
 - H set of High events
 - L set of Low events
More Events …

- $H \cap I$ set of High inputs
- $H \cap O$ set of High outputs
- $L \cap I$ set of Low inputs
- $L \cap O$ set of Low outputs
- T_{Low} set of all possible sequences of Low events that are legal within system
- $\pi_L : T \rightarrow T_{Low}$ projection function deleting all High inputs from trace
 - Low observer should not be able to deduce anything about High inputs from trace $t_{Low} \in T_{low}$
Deducibly Secure

- System deducibly secure if, for every trace \(t_{\text{Low}} \in T_{\text{Low}} \), the corresponding set of high level traces contains every possible trace \(t \in T \) for which \(\pi_L(t) = t_{\text{Low}} \)
 - Given any \(t_{\text{Low}} \), the trace \(t \in T \) producing that \(t_{\text{Low}} \) is equally likely to be any trace with \(\pi_L(t) = t_{\text{Low}} \)
Example

• Back to our 2-bit machine
 – Let xor0, xor1 apply to both bits
 – Both bits output after each command
• Initial state: (0, 1)
• Inputs: $1_H 0_L 1_L 0_H 1_L 0_L$
• Outputs: 10 10 01 01 10 10
• Lara (at Low) sees: 001100
 – Does not know initial state, so does not know first input; but can deduce fourth input is 0
• Not deducibly secure
Example

- Now $xor0$, $xor1$ apply only to state bit with same level as user
- Inputs: $1_H0_L1_L0_H1_L0_L$
- Outputs: 1011111011
- Lara sees: 01101
- She cannot deduce *anything* about input
 - Could be $0_H0_L1_L0_H1_L0_L$ or $0_L1_H1_L0_H1_L0_L$ for example
- Deducibly secure
Security of Composition

- In general: deducibly secure systems not composable
- Strong noninterference: deducible security + requirement that no High output occurs unless caused by a High input
 - Systems meeting this property are composable
Example

• 2-bit machine done earlier does not exhibit strong noninterference
 – Because it puts out High bit even when there is no High input

• Modify machine to output only state bit at level of latest input
 – Now it exhibits strong noninterference
Problem

• Too restrictive; it bans some systems that are *obviously* secure

• Example: System *upgrade* reads *Low* inputs, outputs those bits at *High*
 – Clearly deducibly secure: low level user sees no outputs
 – Clearly does not exhibit strong noninterference, as no high level inputs!
Remove Determinism

• Previous assumption
 – Input, output synchronous
 – Output depends only on commands triggered by input
 • Sometimes absorbed into commands …
 – Input processed one datum at a time

• Not realistic
 – In real systems, lots of asynchronous events
Generalized Noninterference

- Nondeterministic systems meeting noninterference property meet *generalized noninterference-secure property*
 - More robust than nondeducible security because minor changes in assumptions affect whether system is nondeducibly secure
Example

- System with *High* Holly, *Low* lucy, text file at *High*
 - File fixed size, symbol \texttt{b} marks empty space
 - Holly can edit file, Lucy can run this program:

```plaintext
while true do begin
  n := read_integer_from_user;
  if n > file_length or char_in_file[n] = \texttt{b} then
    print random_character;
  else
    print char_in_file[n];
end;
```
Security of System

• Not noninterference-secure
 – High level inputs—Holly’s changes—affect low level outputs

• *May* be deducibly secure
 – Can Lucy deduce contents of file from program?
 – If output meaningful (“This is right”) or close (“Thes is righ”), yes
 – Otherwise, no

• So deducibly secure depends on which inferences are allowed
Composition of Systems

- Does composing systems meeting generalized noninterference-secure property give you a system that also meets this property?
- Define two systems (cat, dog)
- Compose them
First System: *cat*

- Inputs, outputs can go left or right
- After some number of inputs, *cat* sends two outputs
 - First `stop_count`
 - Second parity of *High* inputs, outputs

```
   HIGH          HIGH
     ↓            ↓
  cat  0 or 1   cat
     ↑            ↑
   LOW          LOW
```

`stop_count` 0 or 1
Noninterference-Secure?

• If even number of *High* inputs, output could be:
 – 0 (even number of outputs)
 – 1 (odd number of outputs)

• If odd number of *High* inputs, output could be:
 – 0 (odd number of outputs)
 – 1 (even number of outputs)

• High level inputs do not affect output
 – So noninterference-secure
Second System: *dog*

- High outputs to left
- Low outputs of 0 or 1 to right
- `stop_count` input from the left
 - When it arrives, *dog* emits 0 or 1
Noninterference-Secure?

• When \textit{stop_count} arrives:
 – May or may not be inputs for which there are no corresponding outputs
 – Parity of \textit{High} inputs, outputs can be odd or even
 – Hence \textit{dog} emits 0 or 1

• High level inputs do not affect low level outputs
 – So noninterference-secure
Compose Them

• Once sent, message arrives
 – But stop_count may arrive before all inputs have generated corresponding outputs
 – If so, even number of High inputs and outputs on cat, but odd number on dog
• Four cases arise
The Cases

• *cat*, odd number of inputs, outputs; *dog*, even number of inputs, odd number of outputs
 – Input message from *cat* not arrived at *dog*, contradicting assumption

• *cat*, even number of inputs, outputs; *dog*, odd number of inputs, even number of outputs
 – Input message from *dog* not arrived at *cat*, contradicting assumption
The Cases

• cat, odd number of inputs, outputs; dog, odd number of inputs, even number of outputs
 – dog sent even number of outputs to cat, so cat has had at least one input from left

• cat, even number of inputs, outputs; dog, even number of inputs, odd number of outputs
 – dog sent odd number of outputs to cat, so cat has had at least one input from left
The Conclusion

- Composite system *catdog* emits 0 to left, 1 to right (or 1 to left, 0 to right)
 - Must have received at least one input from left
- Composite system *catdog* emits 0 to left, 0 to right (or 1 to left, 1 to right)
 - Could not have received any from left
- So, *High* inputs affect *Low* outputs
 - Not noninterference-secure
Feedback-Free Systems

- System has \(n \) distinct components
- Components \(c_i, c_j \) connected if any output of \(c_i \) is input to \(c_j \)
- System is \textit{feedback-free} if for all \(c_i \) connected to \(c_j \), \(c_j \) not connected to any \(c_i \)
 - Intuition: once information flows from one component to another, no information flows back from the second to the first
Feedback-Free Security

- **Theorem**: A feedback-free system composed of noninterference-secure systems is itself noninterference-secure
Some Feedback

- **Lemma:** A noninterference-secure system can feed a high level output o to a high level input i if the arrival of o at the input of the next component is delayed until after the next low level input or output.

- **Theorem:** A system with feedback as described in the above lemma and composed of noninterference-secure systems is itself noninterference-secure.
Why Didn’t They Work?

• For compositions to work, machine must act same way regardless of what precedes low level input (high, low, nothing)

• *dog* does not meet this criterion
 – If first input is *stop_count*, *dog* emits 0
 – If high level input precedes *stop_count*, *dog* emits 0 or 1
State Machine Model

- 2-bit machine, levels High, Low, meeting 4 properties:

1. For every input i_k, state σ_j, there is an element $c_m \in C^*$ such that $T^*(c_m, \sigma_j) = \sigma_n$, where $\sigma_n \neq \sigma_j$

 - T^* is total function, inputs and commands always move system to a different state
Property 2

- There is an equivalence relation \(\equiv \) such that:
 - If system in state \(\sigma_i \) and high level sequence of inputs causes transition from \(\sigma_i \) to \(\sigma_j \), then \(\sigma_i \equiv \sigma_j \)
 - If \(\sigma_i \equiv \sigma_j \) and low level sequence of inputs \(i_1, \ldots, i_n \) causes system in state \(\sigma_i \) to transition to \(\sigma_i' \), then there is a state \(\sigma_j' \) such that \(\sigma_i' \equiv \sigma_j' \) and the inputs \(i_1, \ldots, i_n \) cause system in state \(\sigma_j \) to transition to \(\sigma_j' \)

- \(\equiv \) holds if low level projections of both states are same
Property 3

• Let $\sigma_i \equiv \sigma_j$. If high level sequence of outputs o_1, \ldots, o_n indicate system in state σ_i transitioned to state σ_i', then for some state σ_j' with $\sigma_j' \equiv \sigma_i'$, high level sequence of outputs o_1', \ldots, o_m' indicates system in σ_j transitioned to σ_j'

 – High level outputs do not indicate changes in low level projection of states
Property 4

- Let $\sigma_i \equiv \sigma_j$, let c, d be high level output sequences, e a low level output. If ced indicates system in state σ_i transitions to σ_i', then there are high level output sequences c' and d' and state σ_j' such that $c'ed'$ indicates system in state σ_j transitions to state σ_j'
 - Intermingled low level, high level outputs cause changes in low level state reflecting low level outputs only
Restrictiveness

• System is restrictive if it meets the preceding 4 properties
Composition

- Intuition: by 3 and 4, high level output followed by low level output has same effect as low level input, so composition of restrictive systems should be restrictive
Composite System

- System M_1’s outputs are M_2’s inputs
- μ_{1i}, μ_{2i} states of M_1, M_2
- States of composite system pairs of M_1, M_2 states (μ_{1i}, μ_{2i})
- e event causing transition
- e causes transition from state (μ_{1a}, μ_{2a}) to state (μ_{1b}, μ_{2b}) if any of 3 conditions hold
Conditions

1. \(M_1 \) in state \(\mu_{1a} \) and \(e \) occurs, \(M_1 \) transitions to \(\mu_{1b} \); \(e \) not an event for \(M_2 \); and \(\mu_{2a} = \mu_{2b} \)

2. \(M_2 \) in state \(\mu_{2a} \) and \(e \) occurs, \(M_2 \) transitions to \(\mu_{2b} \); \(e \) not an event for \(M_1 \); and \(\mu_{1a} = \mu_{1b} \)

3. \(M_1 \) in state \(\mu_{1a} \) and \(e \) occurs, \(M_1 \) transitions to \(\mu_{1b} \); \(M_2 \) in state \(\mu_{2a} \) and \(e \) occurs, \(M_2 \) transitions to \(\mu_{2b} \); \(e \) is input to one machine, and output from other
Intuition

• Event causing transition in composite system causes transition in at least 1 of the components

• If transition occurs in exactly one component, event must not cause transition in other component when not connected to the composite system
Equivalence for Composite

- Equivalence relation for composite system:
 \[(\sigma_a, \sigma_b) \equiv_C (\sigma_c, \sigma_d) \text{ iff } \sigma_a \equiv \sigma_c \text{ and } \sigma_b \equiv \sigma_d\]
- Corresponds to equivalence relation in property 2 for component system