Lecture A2: Attacks

• Attack trees
• Requires/Provides model
 – JIGSAW attack language
Attack Trees

• Schneier, 1999
 – Similar to fault trees (Amoroso, 1987)
• Methodological approach to describe attacks
 – Also can be used to analyze security
Example

• Goal: open safe
 – Subgoal: pick lock
 – Subgoal: learn combination
 – Subgoal: cut open safe
 – Subgoal: install safe improperly
Subgoal: Learn Combination

• Find written combination
• Get combination from one who knows (target)
 – Threaten
 – Blackmail
 – Eavesdrop
 • Listen to conversation and
 • Get target to state combination
 – Bribe
Attack Tree

from B. Schneier, “Attack Trees”
Dr. Dobbs Journal (Dec. 1999)

March 3, 2009
Basic Risk Analysis

- Mark each node with:
 - “p” possible
 - “i” impossible
 - Note these are *estimates*

- Mark each node with:
 - “s” special equipment
 - “n” no special equipment
Attack Tree #2

open safe

pick lock

learn com

cut open

inst badly

find comb

get from

threaten

extort

eavesdrop

bribe

hear conv

target says

March 3, 2009

ECS 235B Winter Quarter 2009
Matt Bishop, UC Davis
Attack Tree #3

- open safe
 - pick lock
 - find comb
 - threaten
 - learn com
 - cut open
 - cut open
 - inst badly
 - get from
 - extort
 - eavesdrop
 - hear conv
 - target says
 - target says
Cost of Attack

• Put costs on endpoints
• Cost of “and” node
 – Sum of costs for child nodes
• Cost of “or” node
 – Minimum of costs of child nodes
Cost of Attacks

- Open safe
 - Pick lock: $15K
 - Learn com: $40K
 - Cut open: $20K
 - Inst badly: $100K
 - Find comb: $75K
 - Threaten: $40K
 - Extort: $150K
 - Eavesdrop
 - Hear conv: $65K
 - Target says: $40K
 - Bribe: $50K
Which Are No More Than $40K?

- pick lock: $15K
- learn com
- cut open: $20K
- inst badly: $100K
- find comb: $75K
- get from
- threaten: $40K
- extort: $150K
- eavesdrop:
 - hear conv: $25K
 - target says: $40K

attacks for $40K or less

March 3, 2009
Combine These

• Which attacks:
 – cost under $40K and
 – require no special equipment?
Combination Tree

- **pick lock**
 - \(s, \$15K\)

- **learn com**

- **cut open**
 - \(s, \$20K\)

- **inst badly**
 - \(n, \$100K\)

- **find comb**
 - \($75K\)

- **get from**

- **threaten**
 - \(n, \$40K\)

- **extort**
 - \(n, \$150K\)

- **eavesdrop**
 - \(a\)

- **hear conv**
 - \($25K\)

- **target says**
 - \(n, \$40K\)

Attacks for \($40K\) or less without special equipment

ECS 235B Winter Quarter 2009
Matt Bishop, UC Davis

March 3, 2009
Slide #A2-13
Attacking PGP

Goal: Read a message encrypted with PGP

• Decrypt message (OR)
 – Break asymmetric encryption (OR)
 – Break symmetric encryption

• Determine symmetric key used to encrypt message via other means (OR)
 – Fool sender into encrypting message using public key with known private key (OR)
 – Have recipient sign encrypted symmetric key (OR)
 – Monitor sender’s computer memory (OR)
 – Monitor receiver’s computer memory (OR)
 – Determine key from pseudorandom number generator (OR)
 – Implant malicious logic that sends you the symmetric key

• Get recipient to help decrypt message (OR)
 – Chosen ciphertext attack on public key (OR)
 – Spoof Reply-to or From: field of original message (OR)
 – Read message after it has been decrypted by recipient

• Obtain private key of recipient
 – Factor RSA modulus or calculate ElGamal discrete log (OR)
 – Get private key from recipient’s private key ring (OR)
 – Monitor recipient’s memory (OR)
 – Implant malicious logic to expose private key (OR)
 – Generate non-secure public/private key pair for recipient

Creating Attack Trees

• Identify possible goals
 – Each goal forms separate tree, rooted in higher goal

• Continue iterating until you reach all leaves
 – Good to involve lots of people

• Trees can be reused, as part of larger tree
 – These are, in essence, compartmentalization

• Eminently scalable
Requires/Provides Model

General idea:

• To launch an attack, certain properties must hold
 – These are the requires properties
• After the attack, a new set of properties hold
 – These are the provides properties
• The “goal” is simply a property
Usual View of Attacks

• Single exploit
 – Goal is very short term
 – Violates some part of (implicit) security policy
 – Rarely dangerous

• Sequence of single exploits (*scenario attacks*)
 – Goal is longer term, end goal
 – Violates some part of (explicit) security policy
 – Usually dangerous
IDS Languages

• Focus on specific details of exploits
 – Source, destination IP addresses the same
 – Large numbers of TCP SYN packets with same destination port, address

• Express these in a form that is useful to IDS or other analysis tool
 – CISL, Common Intrusion Specification Language
 – IDS-specific signatures, languages
Issues

- **Advantages**
 - Tailored for particular IDS or function
 - Such as interchanges among IDSes
 - Express *very* low-level details

- **Disadvantages**
 - Single exploits
 - Generally do not allow combining attacks
 - Correlation difficult
Problem

• How do we correlate these single attacks into scenario attacks?
 – Example scenario attack
 – Capabilities and concepts
 – The language, JIGSAW
 – Applications
Example: \textit{rsh} Connection Spoofing

Attack scenario:

1. bialystock synflooding franz
2. bialystock probes kafka for starting TCP sequence number information
3. bialystock sends spoofed SYN packet (purportedly from franz) to kafka
4. kafka sends ACK packet to franz, but franz never sees it
5. bialystock sends spoofed packets (purportedly from franz) to kafka, which kafka then executes, as it trusts franz—and attack succeeds
Analysis

• Goal: get kafka to execute commands from untrusted host bialystock

• Subgoal: get kafka to believe trusted host franz is sending the commands
 – Must prevent ACK from kafka from reaching franz
 – Must determine what sequence number kafka would use, so bialystock can use that in “response” to blocked ACK
Blocking Franz

• Used synflood to prevent ACK from reaching franz

• Could have used *anything* that would prevent such reception
 – packet storm attack, saturating network
 – cutting wires
 – ping-of-death to get franz to hang
 – lots more ...
Other Variants

• Distribution
 – Use bialystock to send command
 – Use bloom for synflood
 • And you can forge the source IP address in those packets ...

• Resequencing
 – Start the probing for sequence number before the synflood is launched
Requires/Provides Model

• Capabilities
 – Information, situation required for attack to succeed
 • User login: requires access, user name, password; system requires access to password validation database
 – May represent “links” (lines)
 – May represent leaves
 • Encapsulate assumptions external to analysis
More About Capabilities

• Inherent implication
 – kafka can’t send ACK packets to franz
 – franz can’t receive ACK packets from kafka
 • Either implies the other
 • These may need to be stated explicitly, but you can automate their generation if needed
Requires/Provides Model

• Concepts
 – Situations defining subtasks in scenario attacks
 – Defines requirements for concept to hold
 • Boolean relations on capabilities, configurations
 – Idea: if capabilities satisfy requirements, concept gives new capabilities
Model Features

• Multiple events can produce equivalent capabilities
 – Reason in terms of effects of attack (capabilities produced), not what the attack is

• Attack scenarios may have many variants
 – Again, focus on capabilities produced

• Exploits can be combined in unknown ways to create sophisticated attacks
 – But they will all produce capabilities
More Features

• Attacks compose based on provided/required capabilities
 – In essence, capabilities for the “edges” of the attack graph

• Known exploits/actions/vulnerabilities form terminals in the model
 – This is simply a convenience

• Attacks can be defined locally without knowing how they will be used
JIGSAW

• Language to specify model
• Capability templates
 – Capability specification: named collection of typed attribute-value pairs
• Concepts
 – Set of required capabilities
Example: Capability

```
capability xcap is
    ip_addr:   ip_addr_type;
    port_set:  set of port;
    start_time:  time_type;
    end_time:   time_type;
end.
```
Example: Concept

class RSH_Connection_Spoofing is
 requires
 Trusted_Partner: TP;
 Service_Active: SA;
 Prevent_Packet_Send: PPS;
 extern SeqNumProbe: SNP;
 Forged_Packet_Send: FPS;
 with
 TP.service is RSH, # Service in trust relation is RSH
 PPS.host is TP.trusted, # Blocked host is trusted partner
 FPS.dst.host is TP.trustor, # Spoofed packets to trustor
 SNP.dst.host is TP.trustor, # Probed host is trustor
 FPS.src is [ND.host, PPS.port], # Claimed source of forged packets blocked
 SNP.dst is [SA.host, SA.port], # Probed host running RSH on normal port
 SA.port is TCP/RSH,
 SA.service is RSH,
 SNP.dst is FPS.dst # Probed host is where packets are sent
 active(FPS) during active(PPS) # Forged packets sent while DoS attack active
end;