Lecture 3 Outline

Reading: text, §3

1. What is the safety question?
 a. An unauthorized state is one in which a generic right r could be leaked into an entry in the ACM that did not previously contain r. An initial state is safe for r if it cannot lead to a state in which r could be leaked.
 b. Question: in a given arbitrary protection system, is safety decidable?

2. Mono-operational case: there is an algorithm that decides whether a given mono-operational system and initial state is safe for a given generic right.

3. General case: It is undecidable whether a given state of a given protection system is safe for a given generic right.
 a. Approach: represent Turing machine tape as access control matrix, transitions as commands
 b. Reduce halting problem to it

4. Take-Grant
 a. Counterpoint to HRU result
 b. Symmetry of take and grant rights
 c. Islands (maximal subject-only tg-connected subgraphs)
 d. Bridges (as a combination of terminal and initial spans)

5. Sharing
 a. Definition: can\(\bullet\)share(r, x, y, G_0) true iff there exists a sequence of protection graphs G_0, \ldots, G_n such that G_0 \vdash^* G_n using only take, grant, create, remove rules and in G_n, there is an edge from x to y labeled r
 b. Theorem: can\(\bullet\)share(r, x, y, G_0) iff there is an edge from x to y labeled r in G_0, or all of the following hold:
 i. there is a vertex y’ with an edge from y’ to y labeled r;
 ii. there is a subject y'' which terminally spans to y’, or y'' = y’;
 iii. there is a subject x’ which initially spans to x, or x’ = x; and
 iv. there is a sequence of islands I_1, \ldots, I_n connected by bridges for which x’ \in I_1 and y’ \in I_n.

6. Model Interpretation
 a. ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 b. Theorem: G_0 protection graph with exactly one subject, no edges; R set of rights. Then G_0 \vdash^* G_n iff G_0 is a finite directed graph containing subjects and objects only, with edges labeled from nonempty subsets of R, and with at least one subject with no incoming edges
 c. Example: shared buffer managed by trusted third part

7. Stealing
 a. Definition: can\(\bullet\)steal(r, x, y, G_0) true iff there is no edge from x to y labeled r in G_0, and there exists a sequence of protection graphs G_0, \ldots, G_n such that G_0 \vdash^* G_n in which:
 b. G_n has an edge from x to y labeled r
 c. There is a sequence of rule applications \(\rho_1, \ldots, \rho_n\) such that G_{i-1} \vdash G_i; and
 d. For all vertices v, w \in G_{i-1}, if there is an edge from v to y in G_0 labeled r, then \(\rho_i\) is not of the form “v grants (r to y) to w”
 e. Example